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Abstract 
We introduce the batched set cover problem, which is a generalization of the online set cover problem. In 
this problem, the elements of the ground set that need to be covered arrive in batches. Our main technical 
contribution is a tight Ω(𝐻𝐻𝑚𝑚−2𝑧𝑧+1) lower bound on the competitive ratio of any fractional batched algorithm 
given an adversary that is required to produce batches of VC-dimension at least 𝑧𝑧, for some 𝑧𝑧 ∈ ℕ0. This 
restriction on the adversary is motivated by the fact that, in some real world applications, decisions are 
made after collecting batches of data of non-trivial VC-dimension. In particular, ridesharing systems rely 
on the batch assignment of trip requests to vehicles, and some related problems such as that of optimal 
congregation points for passenger pickups and dropoffs can be modeled as a batched set cover problem 
with VC-dimension greater than or equal to two. Furthermore, we note that while any online algorithm may 
be used to solve the batched set cover problem by artificially sequencing the elements in a batch, this 
procedure may neglect the rich information encoded in the complex interactions between the elements of a 
batch and the sets that contain them. Therefore, we propose a minor modification to an online algorithm 
found in [8] to obtain an algorithm that attempts to exploit such information. Unfortunately, we are unable 
to improve its analysis in a way that reflects this intuition. However, we present computational experiments 
that provide empirical evidence of a constant factor improvement in the competitive ratio. To the best of 
our knowledge, we are the first to use the VC-dimension in the context of online (batched) covering 
problems. 

Keywords: set cover, batched, online, primal-dual, VC-dimension, ridesharing 

1. Introduction 
1.1. Background 

Let 𝑋𝑋 = {1,⋯ ,𝑛𝑛} be a ground set of 𝑛𝑛 elements and 𝑆𝑆 = {𝑆𝑆1,⋯ , 𝑆𝑆𝑚𝑚} be a collection of 𝑚𝑚 subsets of 𝑋𝑋. A 
set cover is a sub-collection of 𝑆𝑆 such that its union is 𝑋𝑋. The set cover problem is to find a minimum 
cardinality set cover of 𝑋𝑋. It is a classic NP-har5d problem that is also hard to approximate to within a factor 
of  (1 − 𝛼𝛼) ln𝑛𝑛 in polynomial time for any 𝛼𝛼 > 0[11,9]. 

In the online setting [2, 7, 8], the members of 𝑆𝑆 are identified a priori, but the elements of the ground set 
that need to be covered, along with their respective set membership, are revealed sequentially. More 
precisely, the online set cover problem consists of a game between an algorithm and an oblivious adversary; 
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one which knows the algorithm but not the realization of any random choices1. The adversary produces, in 
advance, a sequence σ = σ1,𝜎𝜎2 ,⋯ of elements of 𝑋𝑋, which it reveals to the algorithm one at a time. Upon 
the arrival of an element, the algorithm must either conclude that the element is already in the set cover, or 
irrevocably extend the set cover with a member of 𝑆𝑆 containing the element. 

Alon et al. [2] gave a deterministic 𝑂𝑂(log𝑚𝑚 log𝑛𝑛)-competitive algorithm for the online set cover problem 
and a nearly matching lower bound for any online algorithm. Buchbinder and Naor [7, 8] later proposed a 
general scheme for the design and analysis of online algorithms, namely the primal-dual method2 and used 
it to obtain new algorithms for the online set cover problem. Their algorithms generally consist of two 
phases: i) a deterministic 𝑂𝑂(log𝑚𝑚) primal-dual subroutine for the fractional online set cover problem, 
which is optimal up to constant terms, and ii) a randomized rounding procedure whose expected cost is 
𝑂𝑂(log𝑛𝑛) times the cost of the fractional solution, ultimately producing randomized 𝑂𝑂(log𝑚𝑚 log𝑛𝑛)-
competitive algorithms. The rounding procedure can be derandomized, producing deterministic 
𝑂𝑂(log𝑚𝑚 log𝑛𝑛)-competitive algorithms. 

1.2. Contributions 
Herein we introduce the batched set cover problem, which is a generalization of the online set cover 
problem. However, as in [7, 8], our focus is on its fractional counterpart; this corresponds to phase i) of the 
primal-dual scheme. We immediately recover the integral case through the rounding procedures in phase 
ii), which we leave untouched. In essence, the batched set cover problem differs from the online set cover 
problem in that the adversary produces a sequence of batches of elements of 𝑋𝑋. Thus, the online set cover 
problem is a special case of the batched set cover problem in which each element revealed by the adversary 
is its own batch. 

Note that the problem we consider is distinct from the capacitated online set cover problem with set requests 
treated by Bhawalkar et al. [5]. They argue that the uncapacitated problem is not meaningful because the 
elements in a batch can be thought of as arriving sequentially, whereas we argue that this is not always the 
case. Our main technical contribution is a tight lower bound on the competitive ratio of any fractional 
batched algorithm given a parametrized restriction on the adversary. Specifically, if we consider adversaries 
that are required to produce batches of Vapnik Chervonenkis (VC)-dimension [12] at least 𝑧𝑧, for some 𝑧𝑧 ∈
ℕ0, any fractional batched algorithm is Ω(𝐻𝐻𝑚𝑚−2𝑧𝑧+1)-competitive. For 𝑧𝑧 > 0, this bound is more generous 
(to the algorithm) than the Ω(𝐻𝐻𝑚𝑚) bound of the online setting [7, 8] which we recover when 𝑧𝑧 = 0. 

In addition, we propose a minor modification to an online algorithm found in [8] to obtain a dedicated 
batched algorithm. The main idea is the simultaneous update of the dual variables that correspond to 
unsatisfied primal constraints, which is reminiscent of a primal-dual algorithm in [14] for the generalized 
Steiner tree problem. Unfortunately, we are unable to analyze this algorithm in a way that exhibits the 
effects of the more generous (parametrized) bound. Alternatively, we provide computational results that 
suggest that while the greedy strategy proposed in [5] is inoffensive for the worst case instance given 0 ≤
𝑧𝑧 ≤ 1, it compromises on the competitive ratio obtained on the worst case instance given 𝑧𝑧 > 1. Our 
experiments suggest that proposed algorithm improves on the competitive ratio obtained by the greedy 
strategy by some constant factor. 

The significance of this problem stems from the fact that, in some real-world applications, decisions are 
made after collecting a batch of data. Moreover, in many of these applications, batches of data are rarely 

                                                           
1 If the algorithm is deterministic, an oblivious adversary is equivalent to an adaptive adversary; one which makes 
requests adaptively in response to the algorithm [4]. 
2 This scheme first appeared in the context of approximation algorithms [15]. 
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produced by an absolute worst case adversary. The intent of our restricted adversarial model is to mimic 
the worst case instances that may effectively arise in the real world. For example, high-capacity ridesharing 
systems rely on the batch assignment of trip requests to vehicles [3], and some related problems such as 
that of optimal congregation points for passenger pickups and dropoffs can be modeled as a batched set 
cover problem. Intuitively, sequencing a batch of travel requests defeats the purpose of preparing the batch 
in the first place. Moreover, the batches that arise in this setting tend to have a VC-dimension greater than 
or equal to two, as the application revolves around exploiting the overlaps between distinct requests (see 
Section 2). Our results formalize this intuition. As listed in [5], further examples of applications of the 
batched set cover problem may be found in distributed computing, facility planning, and subscription 
markets. 

To the best of our knowledge, we are the first to use the VC-dimension in the context of online (batched) 
covering problems. The VC-dimension has been used successfully in the context of approximation 
algorithms for (offline) set cover problems [6, 10] as well as in the context of improved running time bounds 
for unconstrained [1] and constrained [13] shortest path algorithms. In both of these settings, the algorithms 
exploit the low VC-dimension of the set systems on which they operate. Perhaps surprisingly, algorithms 
for the batched set cover problem may instead exploit the high VC-dimension of the set systems on which 
they operate, which we model as a restriction on the adversary. Intuitively, the reason is that the adversary 
is forced to reveal complex, intertwined batches. A dedicated algorithm attempts to exploit the richness of 
the information revealed, while a greedy algorithm is myopic to the interactions between the set 
memberships of the elements in a batch. 

1.3. Organization 
In Section 2 we formally introduce our problems and definitions. In Section 3 we consider bounds for the 
online fractional set cover problem. We present a known lower bound of Ω(𝐻𝐻𝑚𝑚) on the competitive ratio 
of any online algorithm. While the tightness of this lower bound (up to constants) follows immediately from 
the existence of 𝑂𝑂(𝐻𝐻𝑚𝑚)-competitive fractional algorithms [7, 8], we present an inductive proof that shows 
the tightness of the lower bound without the explicit need of a competitive algorithm. This technique is 
used in Section 4 to show the tightness of a Ω(𝐻𝐻𝑚𝑚−2𝑧𝑧+1)-lower bound on the competitive ratio of any 
batched algorithm, given our restricted adversary parametrized by 𝑧𝑧. The reason for doing this is our 
argument that batching may offer a constant factor improvement in the competitive ratio. Hence, tightness 
up to constants is not informative enough for our purposes. In Section 5 we formalize the greedy strategy 
suggested in [5] and present our minor modification to an online algorithm found in [8]. We also present 
the results of our computational experiments. 

2. Preliminaries 
Let 𝑥𝑥𝑗𝑗 ∈ {0,1} be set to 1 if 𝑆𝑆𝑗𝑗 is brought to the set cover and to 0 otherwise. Now, consider LP1, which 
describes the linear programming relaxation of the offline set cover problem. We refer to LP1 as the primal 
covering problem. Here, 𝑐𝑐𝑗𝑗 > 0 refers to the cost of bringing some set 𝑆𝑆𝑗𝑗 ∈ 𝑆𝑆 to the set cover, and the 
objective is to minimize the total cost incurred. In the unweighted case, 𝑐𝑐𝑗𝑗 = 1 for all 𝑗𝑗 = 1,⋯ ,𝑚𝑚. 
Constraints (1.1) ensure that every element 𝑖𝑖 = 1,⋯ ,𝑛𝑛 in the ground set 𝑋𝑋 is covered. Note that the set 
membership information of each element is encoded in its respective constraint. 

(LP1) 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∑_{𝑗𝑗 = 1,⋯ ,𝑚𝑚} 𝑐𝑐𝑗𝑗𝑥𝑥𝑗𝑗 
𝑠𝑠. 𝑡𝑡. 
(1.1)∑_{𝑗𝑗: 𝑖𝑖 ∈ 𝑆𝑆𝑗𝑗} 𝑥𝑥𝑗𝑗 ≥ 1, 𝑖𝑖 = 1, … ,𝑛𝑛 
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                    𝑥𝑥𝑗𝑗 ≥ 0, 𝑗𝑗 = 1,⋯ ,𝑚𝑚 

The primal covering problem has an associated dual packing problem, described in LP2. We refer to this 
primal-dual formulation throughout this work. We will refer to the collection of sets in 𝑆𝑆 that individually 
contain 𝜎𝜎𝑖𝑖 ∈ 𝑋𝑋 by 𝑆𝑆(𝜎𝜎𝑖𝑖). 

(LP2) 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∑_{𝑖𝑖 = 1,⋯ ,𝑛𝑛}  𝑦𝑦𝑖𝑖 
𝑠𝑠. 𝑡𝑡. 
(1.1)∑_{𝑖𝑖 ∈ 𝑆𝑆𝑗𝑗} 𝑦𝑦𝑖𝑖 ≤ 𝑐𝑐𝑗𝑗, 𝑗𝑗 = 1, … ,𝑚𝑚 
                    𝑦𝑦𝑖𝑖 ≥ 0, 𝑖𝑖 = 1,⋯ ,𝑛𝑛 

In the fractional online setting [7, 8] the objective function of LP1 is known a priori, but constraints (1.1) 
are revealed one by one. This corresponds to the algorithm identifying the costs of the sets in 𝑆𝑆 a priori, but 
the adversary revealing a sequence 𝜎𝜎 = 𝜎𝜎1,𝜎𝜎2,⋯ of elements of 𝑋𝑋, along with their respective set 
membership, in an online fashion. Equivalently, the right hand side of the constraints (2.1) of LP2 are 
known a priori, but the variables involved in them and in the objective function are revealed one by one. 

Now, consider the following batched version of the set cover problem, which is also a game between an 
algorithm and an oblivious adversary. In the batched set cover problem, 𝑆𝑆 is identified a priori, but the 
adversary produces a sequence 𝛽𝛽 = 𝛽𝛽1,𝛽𝛽2,⋯ of batches of elements of 𝑋𝑋, which it reveals one batch at a 
time. For instance, 𝛽𝛽𝑘𝑘 = {𝜎𝜎𝑘𝑘,1,⋯ ,𝜎𝜎𝑘𝑘,|𝛽𝛽𝑘𝑘|}, where |𝛽𝛽𝑘𝑘| denotes the size of the 𝑘𝑘th batch. When a batch 
arrives, all of its elements, along with their respective set membership information, are revealed 
simultaneously. The fractional batched setting is analogous to the fractional online setting, except 
constraints (1.1) appear in tandem. Equivalently, the variables involved in the objective function and 
constraints (2.1) are revealed in tandem. Note that the online setting is trivially recovered when each batch 
is a singleton. We refer to the union of sets in 𝑆𝑆 that individually cover the elements in 𝛽𝛽𝑘𝑘 =
{𝜎𝜎𝑘𝑘,1,⋯ ,𝜎𝜎𝑘𝑘,|𝛽𝛽𝑘𝑘|}, namely 𝑆𝑆(𝜎𝜎𝑘𝑘,1) ∪ ⋯∪ 𝑆𝑆(𝜎𝜎𝑘𝑘,|𝛽𝛽𝑘𝑘|)), by 𝑆𝑆(𝛽𝛽𝑘𝑘). 

We define an instance 𝐼𝐼 of the online set cover problem as a collection 𝑆𝑆 together with the adversarial 
sequence. We introduce the following performance measures. The batched setting for both of these 
measures is analogous. 

Definition 1. An online algorithm 𝐴𝐴𝐴𝐴𝐺𝐺𝑂𝑂 is said to be 𝑐𝑐-competitive if for every instance 𝐼𝐼 of the problem 
it outputs a solution of cost at most 𝑐𝑐 ⋅ 𝑂𝑂𝑂𝑂𝑂𝑂(𝐼𝐼) where 𝑂𝑂𝑂𝑂𝑂𝑂(𝐼𝐼) is the cost of the optimal offline solution. 

Definition 2. An online adversary 𝐴𝐴𝐴𝐴𝑉𝑉𝑂𝑂 is said to be 𝑐𝑐-advantaged if it produces an instance 𝐼𝐼 such that 
every online algorithm 𝐴𝐴𝐴𝐴𝐺𝐺𝑂𝑂 outputs a solution of cost at least 𝑐𝑐 ⋅ 𝑂𝑂𝑂𝑂𝑂𝑂(𝐼𝐼), where 𝑂𝑂𝑂𝑂𝑂𝑂(𝐼𝐼) is the cost of the 
optimal offline solution. 

Our analysis in Section 4 relies on imposing a minimum on the VC-dimension of any batch 𝛽𝛽𝑘𝑘 produced 
by the adversary. The VC-dimension was first proposed by Vapnik and Chernovekis [12], and it is a widely 
used measure of complexity in computational learning theory. We work with the following definitions. 

Definition 3 (Set System). A set system (𝑋𝑋, 𝑆𝑆) is a ground set 𝑋𝑋 together with a collection 𝑆𝑆 of subsets of 
𝑋𝑋. 

Definition 4 (Shattering). A subset 𝐵𝐵 ⊆ 𝑋𝑋 is said to be shattered by 𝑆𝑆 if {𝑆𝑆 ∩ 𝐵𝐵: 𝑆𝑆 ∈ 𝑆𝑆} =  𝑃𝑃(𝐵𝐵), where 
𝑃𝑃(𝐵𝐵) is the power set of 𝐵𝐵. 
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Definition 5 (VC-dimension). The VC-dimension of a set system (𝑋𝑋, 𝑆𝑆) is the cardinality of the largest 
subset 𝐵𝐵 ⊆ 𝑋𝑋 to be shattered by 𝑆𝑆. We denote it by 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋, 𝑆𝑆). 

In particular, upon the arrival of a batch 𝛽𝛽𝑘𝑘 we obtain a set system (𝛽𝛽𝑘𝑘 ,𝑆𝑆), where 𝑆𝑆 is known a priori. 
Moreover, note that i) restricting the adversary to produce batches  𝛽𝛽𝑘𝑘 with VC-dimension 𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽𝑘𝑘,𝑆𝑆) ≥ 𝑧𝑧 
is only meaningful when 𝑚𝑚 = |𝑆𝑆| ≥ 2𝑧𝑧; otherwise the adversary is unable to produce any batches, and ii) 
by definition, any batch satisfying 𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽𝑘𝑘 ,𝑆𝑆) ≥ 𝑧𝑧 also satisfies |𝛽𝛽𝑘𝑘| ≥ 𝑧𝑧.  This is illustrated in Figure 1, 
which showcases how a batch 𝛽𝛽𝑘𝑘 satisfying 𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽𝑘𝑘 ,𝑆𝑆) ≥ 𝑧𝑧 can be constructed with 𝑚𝑚 = 2𝑧𝑧 and |𝛽𝛽𝑘𝑘| =
𝑧𝑧. Observe that in each of the cases, 𝛽𝛽𝑘𝑘 is shattered since each of its subsets is the intersection of 𝛽𝛽𝑘𝑘  with 
some 𝑆𝑆 ∈ 𝑆𝑆. Of course, given 𝑧𝑧, there may be instances for which 𝑚𝑚 > 2𝑧𝑧, or for which the adversary 
produces batches satisfying |𝛽𝛽𝑘𝑘| > 𝑧𝑧, or both. We consider these cases in our analysis in Section 4. 

 

Figure 1: Construction of S and 𝛽𝛽𝑘𝑘 satisfying 𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽𝑘𝑘 , 𝑆𝑆) ≥ 𝑧𝑧, for 𝑧𝑧 = 0,1,2,3 with minimum possible cardinality requirements on 
𝑚𝑚 = |𝑆𝑆| and |𝛽𝛽𝑘𝑘|. The construction for 𝑧𝑧 > 3 is analogous. The nodes labeled 𝑆𝑆1,⋯ ,𝑆𝑆𝑚𝑚 represent the sets in 𝑆𝑆, whereas the circles 
around them represent the elements of 𝛽𝛽𝑘𝑘 ⊆ 𝑋𝑋 they contain (i.e., constraints in LP1) 

In a ridesharing context, we may interpret each 𝑆𝑆 as a possible congregation point (e.g., an intersection in 
a street network), whereas each constraint corresponds to the set of compatible congregation points (e.g., 
within walking distance) for each trip origin or destination. Note that the only reasons why we would have 
𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽𝑘𝑘 ,𝑆𝑆) ≤  1 are if i) |𝛽𝛽𝑘𝑘| ≤  1, or ii) |𝛽𝛽𝑘𝑘| >  1 but all the travel request form either a collection of 
proper subsets or a collection completely disjoint subsets of the possible congregation points. Given 
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sufficiently high and heterogeneous demand, batches with 𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽𝑘𝑘 ,𝑆𝑆) ≤  1 are unlikely to arise; the 
batches that arise look more like the those in Figure 1 (c) and (d). 

3. Fractional Online Set Cover 
Lemma 1 (Variation of Buchbinder and Naor [8]). There exists an instance 𝐼𝐼∗ of the unweighted 
fractional online set cover problem such that any online algorithm is Ω(𝐻𝐻𝑚𝑚)-competitive on this instance. 

Proof. Consider the following instance 𝐼𝐼∗ , which is particular to the sequence 𝜎𝜎 produced by an adversary 
in response to an arbitrary online algorithm 𝐴𝐴𝐴𝐴𝐺𝐺𝑂𝑂. Let 𝜎𝜎1 ∈ ⋂ 𝑆𝑆𝑗𝑗𝑆𝑆𝑗𝑗∈𝑆𝑆 . Upon the arrival of 𝜎𝜎1, 𝐴𝐴𝐴𝐴𝐺𝐺𝑂𝑂 must 

satisfy ∑ 𝑥𝑥𝑗𝑗𝑗𝑗:𝜎𝜎1∈𝑆𝑆𝑗𝑗 ≥  1. Thus, it must let 𝑥𝑥𝑗𝑗 ≥
1
𝑚𝑚

 for at least one 𝑆𝑆𝑗𝑗 ∈ 𝑆𝑆. Refer to such 𝑆𝑆𝑗𝑗 ∈ 𝑆𝑆 as 𝑆𝑆1 and to 
its corresponding variable as 𝑥𝑥1. Now, let 𝜎𝜎2 ∈ ⋂ 𝑆𝑆𝑗𝑗𝑆𝑆𝑗𝑗∈𝑆𝑆∖𝑆𝑆1 . Upon the arrival of 𝜎𝜎2, 𝐴𝐴𝐴𝐴𝐺𝐺𝑂𝑂 must satisfy 

∑ 𝑥𝑥𝑗𝑗𝑗𝑗:𝜎𝜎2∈𝑆𝑆𝑗𝑗 ≥  1. Thus, it must let 𝑥𝑥𝑗𝑗 ≥
1

𝑚𝑚−1
 for at least one 𝑆𝑆𝑗𝑗 ∈ 𝑆𝑆 ∖ 𝑆𝑆1. Again, refer to such 𝑆𝑆𝑗𝑗 ∈ 𝑆𝑆 ∖ 𝑆𝑆1 as 

𝑆𝑆2 and to its corresponding variable as 𝑥𝑥2. In general, an adversary may continue revealing elements 𝜎𝜎𝑖𝑖 
satisfying 

𝜎𝜎𝑖𝑖 ∈ ⋂_{𝑆𝑆𝑗𝑗 ∈ 𝑆𝑆 ∖∪𝑖𝑖′<𝑖𝑖 𝑆𝑆𝑖𝑖
′} 𝑆𝑆𝑗𝑗, 

forcing the algorithm to let 𝑥𝑥𝑗𝑗 ≥
1

𝑚𝑚−𝑖𝑖+1
 for at least one 𝑆𝑆𝑗𝑗 ∈ 𝑆𝑆 ∖∪𝑖𝑖′<𝑖𝑖 𝑆𝑆𝑖𝑖

′ . Refer to such 𝑆𝑆𝑗𝑗 ∈ 𝑆𝑆 ∖∪𝑖𝑖′<𝑖𝑖 𝑆𝑆𝑖𝑖
′  

as 𝑆𝑆𝑖𝑖 and to its corresponding variable as 𝑥𝑥𝑖𝑖. After 𝑚𝑚 steps, the total cost 𝐴𝐴𝐴𝐴𝐺𝐺𝑂𝑂(𝐼𝐼∗) incurred by the 
algorithm, namely 𝑥𝑥1 +⋯+ 𝑥𝑥𝑚𝑚, is at least 

1
𝑚𝑚

+
1

𝑚𝑚 − 1
+ ⋯+

1
2

+ 1 = 𝐻𝐻𝑚𝑚. 

Meanwhile, the total cost 𝑂𝑂𝑂𝑂𝑂𝑂(𝐼𝐼∗) incurred by an optimal offline solution is 1, which corresponds to simply 

letting 𝑥𝑥𝑚𝑚 = 1. Thus, 𝐻𝐻𝑚𝑚 ≤ 𝐴𝐴𝐴𝐴𝐺𝐺𝑂𝑂(𝐼𝐼∗)
𝑂𝑂𝑂𝑂𝑂𝑂(𝐼𝐼∗)

. Q.E.D. 

Note that 𝐼𝐼∗ depends on 𝐴𝐴𝐴𝐴𝐺𝐺𝑂𝑂 only in the sense that the particular adversarial sequence 𝜎𝜎 produced is a 
response to the particular algorithm; the lower bound on the competitive factor, on the other hand, is 
independent of the algorithm. Thus, we may parametrize the instance 𝐼𝐼∗ in Lemma 1 by 𝑚𝑚 = |𝑆𝑆| to obtain 
the instance class 𝐼𝐼∗(𝑚𝑚). In other words, 𝐼𝐼∗(𝑚𝑚) refers to the instances that produce a lower bound of 𝐻𝐻𝑚𝑚 
on the competitive factor of any online algorithm as a result of the adversary following the strategy in the 
proof of Lemma 1. If we vary 𝑚𝑚, we obtain the family of instance classes 𝐼𝐼∗ = {𝐼𝐼∗(𝑚𝑚):𝑚𝑚 ∈ ℤ+}. 

The tightness of this lower bound (up to constants) is an immediate result of the existence of 𝑂𝑂(log𝑚𝑚)-
competitive algorithms for the fractional online set cover problem [7, 8]. In Lemma 3 we present a different 
approach to show that this lower bound is tight, this time without relying on a particular algorithm. We use 
Lemma 2 whose proof is in the Appendix. 

Lemma 2. 𝐻𝐻𝑟𝑟 ≥
1
2
(𝐻𝐻𝑟𝑟−𝑡𝑡 +𝐻𝐻𝑡𝑡) for any 𝑟𝑟 ≥ 𝑡𝑡 ≥ 0. 

Lemma 3. There exists an online algorithm 𝐴𝐴𝐴𝐴𝐺𝐺𝑂𝑂 for the unweighted fractional online set cover problem 
such that any adversary is 𝑂𝑂(𝐻𝐻𝑚𝑚)-advantaged. In particular, this bound is matched by any adversary that 
follows the strategy in the family of instance classes 𝐼𝐼∗, described in the proof of Lemma 1. 

Proof. By Lemma 1, there exists an adversary that is 𝐻𝐻𝑚𝑚-advantaged, namely one that follows the strategy 
of instance class 𝐼𝐼∗(𝑚𝑚). We need to show that this is indeed the best an adversary can be guaranteed to 
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achieve. We prove this by strong induction on 𝑚𝑚 and by focusing on an arbitrary adversary 𝐴𝐴𝐴𝐴𝑉𝑉𝑂𝑂. We will 
make use of the existence of a randomized algorithm 𝐴𝐴𝐴𝐴𝐺𝐺𝑂𝑂 that, in principle, produces specific outcomes 
with non-zero probability. 

Base Case (𝑚𝑚 = 1): When 𝐴𝐴𝐴𝐴𝑉𝑉𝑂𝑂 reveals any element 𝜎𝜎1, it must be the case that 𝜎𝜎1 ∈ 𝑆𝑆1. Then, 𝐴𝐴𝐴𝐴𝐺𝐺𝑂𝑂 
must let 𝑥𝑥 = 1, achieving a competitive factor of 𝐻𝐻1, as in 𝐼𝐼∗(1). 

Inductive Step: Assume, by way of strong induction, that the statement is true for 𝑚𝑚 = 2,⋯ ,𝑤𝑤. We need 
to show that the statement is true for 𝑚𝑚 = 𝑤𝑤 + 1. By Lemma 1, there exists an adversary that is 𝐻𝐻𝑤𝑤+1-
advantaged, namely one that follows the strategy of instance class 𝐼𝐼∗(𝑤𝑤 + 1). Now, consider the case in 
which 𝐴𝐴𝐴𝐴𝑉𝑉𝑂𝑂 deviates from the strategy of 𝐼𝐼∗(𝑤𝑤 + 1) on some arbitrary step 𝑖𝑖. Let 𝜎𝜎𝑖𝑖∗  be the 𝑖𝑖th element 
according to the strategy of 𝐼𝐼∗(𝑤𝑤 + 1). If  𝐴𝐴𝐴𝐴𝑉𝑉𝑂𝑂 reveals an element 𝜎𝜎𝑖𝑖 such that 𝑆𝑆(𝜎𝜎𝑖𝑖) ∩ 𝑆𝑆(𝜎𝜎𝑖𝑖∗) is empty, 
the cost of the optimal solution increases by 1, which by Lemma 2 irrevocably decreases the advantage of 
𝐴𝐴𝐴𝐴𝑉𝑉𝑂𝑂. Therefore, suppose that 𝐴𝐴𝐴𝐴𝑉𝑉𝑂𝑂 reveals an element 𝜎𝜎𝑖𝑖 such that 𝑆𝑆(𝜎𝜎𝑖𝑖) ∩ 𝑆𝑆(𝜎𝜎𝑖𝑖∗) is non-empty. Then, 
with non-zero probability 𝐴𝐴𝐴𝐴𝐺𝐺𝑂𝑂 disregards all 𝑆𝑆𝑗𝑗 ∈ 𝑆𝑆(𝜎𝜎𝑖𝑖) ∖ 𝑆𝑆(𝜎𝜎𝑖𝑖∗), if any, making such deviation futile. 
Thus, safely assume that 𝐴𝐴𝐴𝐴𝑉𝑉𝑂𝑂 instead reveals an element 𝜎𝜎𝑖𝑖 such that 𝑆𝑆(𝜎𝜎𝑖𝑖) ⊂ 𝑆𝑆(𝜎𝜎𝑖𝑖∗). Let 𝑡𝑡 = |𝑆𝑆(𝜎𝜎𝑖𝑖)|, 
𝑟𝑟 = |𝑆𝑆(𝜎𝜎𝑖𝑖∗)|, and note that 𝑟𝑟 > 𝑡𝑡. Let 𝑖𝑖′ > 𝑖𝑖 be the first step after step 𝑖𝑖 such that 𝑆𝑆(𝜎𝜎𝑖𝑖) ∩ 𝑆𝑆(𝜎𝜎𝑖𝑖′) ≠ ∅. As 
before, with non-zero probability 𝐴𝐴𝐴𝐴𝐺𝐺𝑂𝑂 disregards all 𝑆𝑆𝑗𝑗 ∈ 𝑆𝑆(𝜎𝜎𝑖𝑖′) ∖ 𝑆𝑆(𝜎𝜎𝑖𝑖), if any, so safely assume that 
𝐴𝐴𝐴𝐴𝑉𝑉𝑂𝑂 reveals an element 𝜎𝜎𝑖𝑖′  such that 𝑆𝑆(𝜎𝜎𝑖𝑖′) ⊂ 𝑆𝑆(𝜎𝜎𝑖𝑖). Then, by the inductive hypothesis, given that 
element 𝜎𝜎𝑖𝑖 satisfied 𝑆𝑆(𝜎𝜎𝑖𝑖) ⊂ 𝑆𝑆(𝜎𝜎𝑖𝑖∗), the best 𝐴𝐴𝐴𝐴𝑉𝑉𝑂𝑂can do is to recreate 𝐼𝐼∗(𝑡𝑡) on the remainder of the steps, 
starting with 𝑖𝑖′. In particular, the best 𝐴𝐴𝐴𝐴𝑉𝑉𝑂𝑂 can do is to reveal an element 𝜎𝜎𝑖𝑖′  such that 𝑆𝑆(𝜎𝜎𝑖𝑖′) ⊂ 𝑆𝑆(𝜎𝜎𝑖𝑖) 
and |𝑆𝑆(𝜎𝜎𝑖𝑖′)| + 1 = |𝑆𝑆(𝜎𝜎𝑖𝑖)|. A symmetric argument can be made about concurrently recreating 𝐼𝐼∗(𝑟𝑟 − 𝑡𝑡) 
on the remainder of the steps, which is disjoint from 𝐼𝐼∗(𝑡𝑡) after the 𝑖𝑖th step and hence increases the offline 
solution by one. However, by Lemma 2, this achieves a strictly lower competitive advantage for 𝐴𝐴𝐴𝐴𝑉𝑉𝑂𝑂. 
Q.E.D. 

4. Fractional Batched Set Cover 
4.1. General Case 

Lemma 4. There exists an instance 𝐼𝐼∗ of the unweighted fractional batched set cover problem such that any 
batched algorithm is Ω(𝐻𝐻𝑚𝑚)-competitive on this instance. 

Lemma 5. There exists a batched algorithm 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵 for the unweighted fractional batched set cover problem 
such that any adversary is 𝑂𝑂(𝐻𝐻𝑚𝑚)-advantaged. 

Lemma 4 follows from the fact that the fractional online set cover problem is a special case of the fractional 
batched set cover problem, together with Lemma 1. In Section 4.2 we consider the case in which the 
adversary is imposed a minimum VC-dimension for any batch 𝛽𝛽𝑘𝑘 produced. In the proof of Lemma 7, we 
mention why an adversary never benefits from producing batches with a VC-dimension larger than the 
minimum required. This, together with Lemma 3, yields Lemma 5. 

4.2. Restricted Adversary 
Our intent now is to characterize instance classes that distinguish the fractional batched set cover problem 
from the fractional online set cover problem. In particular, we restrict the adversary in that it is forced to 
produce batches 𝛽𝛽𝑘𝑘 satisfying 𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽𝑘𝑘 ,𝑆𝑆) ≥ 𝑧𝑧, for some 𝑧𝑧 ∈ ℕ0. Given 𝑧𝑧, we assume that 𝑚𝑚 = |𝑆𝑆| ≥ 2𝑧𝑧 
and 𝛽𝛽𝑘𝑘 ≥ 𝑧𝑧, as described in Section 2. 
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Lemma 6. There exists an instance 𝐼𝐼𝑧𝑧∗ of the unweighted fractional batched set cover problem, with an 
adversary satisfying 𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽𝑘𝑘 ,𝑆𝑆) ≥ 𝑧𝑧 for any batch 𝛽𝛽𝑘𝑘, such that any batched algorithm is Ω(𝐻𝐻𝑚𝑚−2𝑧𝑧+1)-
competitive on this instance. 

Proof. This proof is analogous to that of Lemma 1. Consider the following instance 𝐼𝐼𝑧𝑧∗, which is particular 
to the sequence 𝛽𝛽 produced by an adversary satisfying 𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽𝑘𝑘 ,𝑆𝑆) ≥ 𝑧𝑧 for any batch 𝛽𝛽𝑘𝑘, in response to an 
arbitrary batched algorithm 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵. In the following, our ordering of 𝑆𝑆1,⋯ , 𝑆𝑆𝑚𝑚 ∈ 𝑆𝑆 is arbitrary. 

Let 𝛽𝛽1 = {𝜎𝜎1,1,⋯ ,𝜎𝜎1,𝑧𝑧,𝜎𝜎1,𝑧𝑧+1} such that 𝑆𝑆({𝜎𝜎1,1,⋯ ,𝜎𝜎1,𝑧𝑧}) is as in the diagram in Figure 1 on sets 
𝑆𝑆1,⋯ , 𝑆𝑆2𝑧𝑧−1,𝑆𝑆2𝑧𝑧 with 𝛽𝛽1 ∩ 𝑆𝑆2𝑧𝑧 = 𝛽𝛽1, in addition to each 𝜎𝜎1,𝑞𝑞 ∈ 𝛽𝛽1 being also contained in each 𝑆𝑆𝑗𝑗 ∈
{𝑆𝑆2𝑧𝑧 ,𝑆𝑆2𝑧𝑧+1,⋯ , 𝑆𝑆𝑚𝑚}. This last property cannot decrease the VC-dimension, so 𝛽𝛽1 is a valid batch. Then, 
because of the constraint corresponding to 𝜎𝜎1,𝑧𝑧+1 ∈ 𝛽𝛽1, 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵 must let 𝑥𝑥𝑗𝑗 ≥

1
𝑚𝑚−2𝑧𝑧+1

 for at least one 𝑆𝑆𝑗𝑗 ∈
{𝑆𝑆2𝑧𝑧 ,⋯ , 𝑆𝑆𝑚𝑚}. For clarity and without loss of generality, assume such 𝑆𝑆𝑗𝑗 is 𝑆𝑆2𝑧𝑧. 

Then, let 𝛽𝛽2 = {𝜎𝜎2,1,⋯ ,𝜎𝜎2,𝑧𝑧,𝜎𝜎2,𝑧𝑧+1} such that 𝑆𝑆({𝜎𝜎2,1,⋯ ,𝜎𝜎2,𝑧𝑧}) is as in the diagrams in Figure 1on sets 
𝑆𝑆2,⋯ , 𝑆𝑆2𝑧𝑧 ,𝑆𝑆2𝑧𝑧+1 with 𝛽𝛽2 ∩ 𝑆𝑆2𝑧𝑧+1 = 𝛽𝛽2, in addition to each 𝜎𝜎2,𝑞𝑞 ∈ 𝛽𝛽2 being also contained in each 𝑆𝑆𝑗𝑗 ∈
{𝑆𝑆2𝑧𝑧+1,⋯ , 𝑆𝑆𝑚𝑚}. Then, because of the constraint corresponding to 𝜎𝜎2,𝑧𝑧+1 ∈ 𝛽𝛽2, 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵 must let 𝑥𝑥𝑗𝑗 ≥

1
𝑚𝑚−2𝑧𝑧−1+1

 for at least one 𝑆𝑆𝑗𝑗 ∈ {𝑆𝑆2𝑧𝑧+1,⋯ , 𝑆𝑆𝑚𝑚}. For clarity and without loss of generality, assume such 𝑆𝑆𝑗𝑗 is 
𝑆𝑆2𝑧𝑧+1. 

In general, an adversary may continue revealing 𝛽𝛽𝑘𝑘 = {𝜎𝜎𝑘𝑘,1,⋯ ,𝜎𝜎𝑘𝑘,𝑧𝑧,𝜎𝜎𝑘𝑘,𝑧𝑧+1} such that 𝑆𝑆({𝜎𝜎𝑘𝑘,1,⋯ ,𝜎𝜎𝑘𝑘,𝑧𝑧}) is 
as in the diagrams in Figure 1on sets 𝑆𝑆𝑘𝑘,⋯ , 𝑆𝑆2𝑧𝑧+𝑘𝑘−2,𝑆𝑆2𝑧𝑧+𝑘𝑘−1 with 𝛽𝛽𝑘𝑘 ∩ 𝑆𝑆2𝑧𝑧+𝑘𝑘−1 = 𝛽𝛽𝑘𝑘 , in addition to each 
𝜎𝜎𝑘𝑘,𝑞𝑞 ∈ 𝛽𝛽𝑘𝑘 being also contained in each 𝑆𝑆𝑗𝑗 ∈ {𝑆𝑆2𝑧𝑧+𝑘𝑘−1,⋯ , 𝑆𝑆𝑚𝑚}. Then, because of the constraint 
corresponding to 𝜎𝜎𝑘𝑘,𝑧𝑧+1 ∈ 𝛽𝛽𝑘𝑘, 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵must let 𝑥𝑥𝑗𝑗 ≥

1
𝑚𝑚−2𝑧𝑧−(𝑘𝑘−1)+1

 for at least one 𝑆𝑆𝑗𝑗 ∈ {𝑆𝑆2𝑧𝑧+𝑘𝑘−1,⋯ , 𝑆𝑆𝑚𝑚}. For 
clarity and without loss of generality, assume such 𝑆𝑆𝑗𝑗 is 𝑆𝑆2𝑧𝑧+𝑘𝑘−1. 

After the 𝑚𝑚 − 2𝑧𝑧 + 1 possible steps, the total cost 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵(𝐼𝐼𝑧𝑧∗) incurred by the algorithm, namely 𝑥𝑥2𝑧𝑧 +⋯+
𝑥𝑥𝑚𝑚, is at least 

𝐻𝐻𝑚𝑚−2𝑧𝑧+1 =
1

𝑚𝑚− 2𝑧𝑧 + 1
+

1
𝑚𝑚 − 2𝑧𝑧

+ ⋯+
1
2

+ 1. 

Meanwhile, the total cost 𝑂𝑂𝑂𝑂𝑂𝑂(𝐼𝐼𝑧𝑧∗) incurred by an optimal offline solution is 1, which corresponds to simply 

letting 𝑥𝑥𝑚𝑚−2𝑧𝑧+1 = 1. Thus, 𝐻𝐻𝑚𝑚−2𝑧𝑧+1 ≤
𝐴𝐴𝐴𝐴𝐺𝐺𝑂𝑂(𝐼𝐼𝑧𝑧∗)
𝑂𝑂𝑂𝑂𝑂𝑂(𝐼𝐼𝑧𝑧∗)

. In simple terms, the adversary may capitalize on 𝑆𝑆𝑗𝑗 ∈

{𝑆𝑆2𝑧𝑧 ,⋯ , 𝑆𝑆𝑚𝑚} while assuming a sunk cost 𝑆𝑆𝑗𝑗 ∈ {𝑆𝑆1,⋯ , 𝑆𝑆2𝑧𝑧−1}. Q.E.D. 

As in Section 3, we parametrize the instances 𝐼𝐼𝑧𝑧∗ in Lemma 6 by 𝑚𝑚. Thus, given 𝑧𝑧, we obtain the family of 
instance classes 𝐼𝐼𝑧𝑧∗ = {𝐼𝐼𝑧𝑧∗(𝑚𝑚):𝑚𝑚 ∈ ℤ+}. We recover the general case when 𝑧𝑧 = 0. Analogous to Lemma 3, 
Lemma 7 shows the lower bound given 𝑧𝑧 is tight. Its proof can be found in the Appendix. 

Lemma 7. There exists a batched algorithm 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵 for the unweighted fractional online set cover problem 
such that any adversary satisfying 𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽𝑘𝑘 ,𝑆𝑆) ≥ 𝑧𝑧 for any batch 𝛽𝛽𝑘𝑘 is O(𝐻𝐻𝑚𝑚−2𝑧𝑧+1)-advantaged. In 
particular, this bound is matched by any adversary that follows the strategy in the family of instance classes 
𝐼𝐼𝑧𝑧∗, described in the proof of Lemma 6. 
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5. Batched Algorithms 
5.1. Analysis 

Note that since any batch 𝛽𝛽𝑘𝑘  could be artificially decomposed into a sequence of |𝛽𝛽𝑘𝑘| elements that are 
‘revealed’ one at a time, any competitive algorithm for online set cover would produce a competitive 
feasible solution; we refer to this as the ‘trivial’ approach. More precisely, the trivial approach consists of 
two phases: i) some (possibly randomized) subroutine that executes a mapping 𝑓𝑓:𝛽𝛽𝑘𝑘 → (𝜎𝜎𝑘𝑘,1′ ,⋯ ,𝜎𝜎𝑘𝑘,𝑏𝑏𝑘𝑘

′ ) , 
where 𝜎𝜎𝑘𝑘,𝑞𝑞′ is the 𝑞𝑞′th element of the artificial sequence, followed by ii) any competitive algorithm for the 
online set cover problem. 

An example of such approach is the 𝑂𝑂(log𝑚𝑚)-competitive primal-dual subroutine in Algorithm 1, which 
we refer to as 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵,𝑇𝑇 followed by any 𝑂𝑂(log𝑛𝑛) rounding technique (i.e., the second phase of the primal-
dual method). 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵,𝑇𝑇 is a minor modification of the 𝑂𝑂(log𝑚𝑚)-competitive Algorithm 2 in Section 4.2 of 
[8] for the batched setting. Note that 𝑑𝑑 = 𝑚𝑚𝑎𝑎𝑎𝑎𝑘𝑘,𝑞𝑞|𝑆𝑆(𝜎𝜎𝑘𝑘,𝑞𝑞)| ≤ 𝑚𝑚. Its correctness follows immediately from 
Theorem 4.2 of [8]. For conciseness, we only mention that the proof relies on showing three claims together 
with weak duality: i) the algorithm produces a primal feasible solution to LP1, ii)  the algorithm produces 
a dual feasible solution to LP2, and iii) the objective value of LP1 is bounded above by 𝑂𝑂(log𝑚𝑚) times the 
objective value of LP2. Clearly, the complete algorithm is 𝑂𝑂(log𝑚𝑚 log𝑛𝑛)-competitive. 

Algorithm 1: 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵,𝑇𝑇: ‘Trivial’ batched algorithm. 

/* Upon the arrival of batch 𝑘𝑘 ≔ {𝜎𝜎𝑘𝑘,1,⋯ ,𝜎𝜎𝑘𝑘,|𝛽𝛽𝑘𝑘|}:      */ 

1. for 𝜎𝜎𝑘𝑘,𝑞𝑞 ∈ 𝑓𝑓({𝜎𝜎𝑘𝑘,1,⋯ ,𝜎𝜎𝑘𝑘,|𝛽𝛽𝑘𝑘|})do 
2.         while ∑ 𝑥𝑥𝑗𝑗𝑗𝑗:𝜎𝜎𝑘𝑘,𝑞𝑞∈𝑆𝑆𝑗𝑗 < 1 do 
3.                 Increase 𝑦𝑦𝑘𝑘,𝑞𝑞 continuously 

4.                 𝑥𝑥𝑗𝑗 ←
1
𝑑𝑑

[exp(ln(1+𝑑𝑑)
𝑐𝑐𝑗𝑗

⋅ ∑ 𝑦𝑦𝑘𝑘′,𝑞𝑞′𝑘𝑘′,𝑞𝑞′:𝜎𝜎𝑘𝑘′,𝑞𝑞′∈𝑆𝑆𝑗𝑗
) − 1], ∀𝑗𝑗:𝜎𝜎𝑘𝑘,𝑞𝑞 ∈ 𝑆𝑆𝑗𝑗 

5.         end 
6. end 

Nevertheless, unless for all |𝛽𝛽𝑘𝑘 | = 1 for all k, the trivial approach may fail to leverage the rich information 
that is possibly implicit in the fact that all elements of a given batch are revealed simultaneously. We refer 
to an algorithm that attempts to leverage any such information as a ‘dedicated’ algorithm. We obtain such 
an algorithm if we replace 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵,𝑇𝑇 with Algorithm 2, which we refer to as 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵,𝐷𝐷. 

Algorithm 2: 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵,𝐷𝐷: ‘Dedicated’ batched algorithm. 

/* Upon the arrival of batch 𝑘𝑘 ≔ {𝜎𝜎𝑘𝑘,1,⋯ ,𝜎𝜎𝑘𝑘,|𝛽𝛽𝑘𝑘|}:      */ 

1. while ∃𝜎𝜎𝑘𝑘,𝑞𝑞 such that ∑ 𝑥𝑥𝑗𝑗𝑗𝑗:𝜎𝜎𝑘𝑘,𝑞𝑞∈𝑆𝑆𝑗𝑗 < 1 do 
2.         Increase 𝑦𝑦𝑘𝑘,𝑞𝑞 continuously, ∀𝑞𝑞:∑ 𝑥𝑥𝑗𝑗𝑗𝑗:𝜎𝜎𝑘𝑘,𝑞𝑞∈𝑆𝑆𝑗𝑗 < 1 

3.         𝑥𝑥𝑗𝑗 ←
1
𝑑𝑑

[exp(ln(1+𝑑𝑑)
𝑐𝑐𝑗𝑗

⋅ ∑ 𝑦𝑦𝑘𝑘′,𝑞𝑞′𝑘𝑘′,𝑞𝑞′:𝜎𝜎𝑘𝑘′,𝑞𝑞′∈𝑆𝑆𝑗𝑗
) − 1]∀𝑗𝑗:∃𝜎𝜎𝑘𝑘,𝑞𝑞 ∈ 𝑆𝑆𝑗𝑗 

4. end 

Note the difference in how the dual variables are updated: sequentially in 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵,𝑇𝑇 and simultaneously in 
𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵,𝐷𝐷. This is reminiscent of the approach of increasing multiple variables at once in a primal-dual 
algorithm by [14] for the generalized Steiner tree problem. As expected, 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵,𝐷𝐷 is also 𝑂𝑂(log𝑚𝑚)-
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competitive3; it is also a minor modification of the 𝑂𝑂(log𝑚𝑚)-competitive Algorithm 2 in Section 4.2 of [8], 
and its correctness also follows immediately from Theorem 4.2 of [8]. Unfortunately, we are unable to 
improve its analysis in a way that reflects the intuition that batching should improve the competitive factor 
obtained under certain conditions. For example, we expect batching to help in the families of instances 𝐼𝐼𝑧𝑧∗, 
shown in Section 4 to produce a more generous lower bound on the competitive factor of any algorithm 
due to the VC-dimension requirement on the batches produced by the adversary. We leave presenting such 
an analysis as an open problem. As an alternative, in Section 5.2 we present the results of computational 
experiments that compare the performance (i.e., competitive factor) of 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵,𝑇𝑇 and 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵,𝐷𝐷 on instances of 
𝐼𝐼𝑧𝑧∗. 

5.2. Computational Experiments 
Figure 2 (a) and (b) present the results of computational experiments that compare the worst-case 
performance (i.e., competitive factor) of 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵,𝑇𝑇 and 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵,𝐷𝐷 obtained on instances of 𝐼𝐼𝑧𝑧∗, respectively, for 
various values of 𝑧𝑧 and 𝑚𝑚. We discretize both algorithms with a step size of 𝜖𝜖 = 0.001. We justify the use 
of instances of 𝐼𝐼𝑧𝑧∗ by the fact that it is not some arbitrary family of instance classes; Lemma 6 and Lemma 
7 imply it produces tight bounds. Also, note that because of the symmetric nature of the batches 𝛽𝛽𝑘𝑘 that 
arise in 𝐼𝐼𝑧𝑧∗, the particular order produced by the mapping 𝑓𝑓:𝛽𝛽𝑘𝑘 → (𝜎𝜎𝑘𝑘,1′ ,⋯ ,𝜎𝜎𝑘𝑘,|𝛽𝛽𝑘𝑘|′) in 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵,𝑇𝑇 is irrelevant 
for evaluating the worst-case performance of the trivial approach so long as 𝜎𝜎𝑘𝑘,𝑧𝑧+1 is the last element 
‘revealed’. This notion does not translate to 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵,𝐷𝐷, since the dual variable updates occur simultaneously. 
Also, recall that for instances in 𝐼𝐼𝑧𝑧 the optimal offline solution is one. 

 

Figure 2: Competitive ratio of (a) 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵,𝑇𝑇and (b) 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵,𝐷𝐷, obtained on instances of 𝐼𝐼𝑧𝑧∗ for𝑧𝑧 = 0,1,2,3,4. The solid line indicates the 
competitive ratio obtained by the algorithm, while the dashed line indicates the 𝛺𝛺(𝐻𝐻𝑚𝑚−2𝑧𝑧+1) lower bound on the competitive ratio 
of any batched algorithm. 

Note that for 𝑧𝑧 = 0,1, both algorithms match the theoretical lower bound. This is expected, as in both of 
these cases, per the description of 𝐼𝐼𝑧𝑧∗, all the batches are singletons. On the other hand, for 𝑧𝑧 > 1, neither of 
the algorithms match said lower bound. However, it can be observed that 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵,𝐷𝐷 is closer than 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵,𝑇𝑇 to 
the theoretical lower bound on the competitive ratio; this is not surprising as the algorithm has only be 
shown to be optimal up to constants. The improvement is more significant as 𝑧𝑧 increases, though it is only 

                                                           
3 To be precise, both algorithms are 2ln (1 + 𝑑𝑑)-competitive. 
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by a constant factor; both curves remain logarithmic. These results provide empirical evidence of the 
benefits of batching when the VC-dimension is high. 
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Appendix 
Proof of Lemma 2 
Proof. Assume, without loss of generality, that 𝑟𝑟 − 𝑡𝑡 ≥ 𝑡𝑡. Note that 

𝐻𝐻𝑟𝑟 =
1
𝑟𝑟

+
1

𝑟𝑟 − 1
+ ⋯+

1
𝑡𝑡 + 1

+ 𝐻𝐻𝑡𝑡. 

Likewise, note that 

1
2
(𝐻𝐻𝑟𝑟−𝑡𝑡 + 𝐻𝐻𝑡𝑡) =

1
2
(

1
𝑟𝑟 − 𝑡𝑡

+
1

𝑟𝑟 − 𝑡𝑡 − 1
+ ⋯+

1
2

+ 1 +
1
𝑡𝑡

+
1

𝑡𝑡 − 1
+ ⋯+

1
2

+ 1) 

                           =  
1
2
(

1
𝑟𝑟 − 𝑡𝑡

+
1

𝑟𝑟 − 𝑡𝑡 − 1
+ ⋯+

1
𝑡𝑡 + 1

) +
1
𝑡𝑡

+
1

𝑡𝑡 − 1
+ ⋯+

1
2

+ 1 

=  
1
2
(

1
𝑟𝑟 − 𝑡𝑡

+
1

𝑟𝑟 − 𝑡𝑡 − 1
+ ⋯+

1
𝑡𝑡 + 1

) + 𝐻𝐻𝑡𝑡. 

Clearly, 

1
𝑟𝑟

+
1

𝑟𝑟 − 1
+ ⋯+

1
𝑡𝑡 + 1

>
1
2
(

1
𝑟𝑟 − 𝑡𝑡

+
1

𝑟𝑟 − 𝑡𝑡 − 1
+ ⋯+

1
𝑡𝑡 + 1

), 

so the proof is complete. Q.E.D. 

Proof of Lemma 7 
Proof. This proof is analogous to that of Lemma 3. By Lemma 6 there exists an adversary satisfying 
𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽𝑘𝑘 ,𝑆𝑆) ≥ 𝑧𝑧 for any batch 𝛽𝛽𝑘𝑘 that is 𝐻𝐻𝑚𝑚−2𝑧𝑧+1-advantaged, namely one that follows the strategy of 
instance class 𝐼𝐼𝑧𝑧∗(𝑚𝑚). We need to show that this is indeed the best an adversary can be guaranteed to achieve. 
We prove this by strong induction on 𝑚𝑚 and by focusing on an arbitrary batched adversary 𝐴𝐴𝐴𝐴𝑉𝑉𝐵𝐵. We will 
make use of the existence of a randomized algorithm 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵 that, in principle, produces specific outcomes 
with non-zero probability. 

Base Case (1 ≤ 𝑚𝑚 < 2𝑧𝑧): If 𝑚𝑚 < 2𝑧𝑧, the statement is vacuously true because the adversary cannot produce 
any batches. 

Base Case (𝑚𝑚 = 2𝑧𝑧): When 𝐴𝐴𝐴𝐴𝑉𝑉𝐵𝐵 reveals any batch 𝛽𝛽1 = {𝜎𝜎1,1,⋯ ,𝜎𝜎1,𝑧𝑧}, it must be the case that 𝑆𝑆(𝛽𝛽1) is 
as in the diagrams in Figure 1 on sets 𝑆𝑆1,⋯ , 𝑆𝑆𝑚𝑚=2𝑧𝑧. Then, with non-zero probability, 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵 disregards any 
𝑆𝑆𝑗𝑗 ∉ {𝑆𝑆𝑚𝑚}. In such case, 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵 lets 𝑥𝑥𝑚𝑚 = 1, achieving a competitive factor of 𝐻𝐻1. This is in agreement with 
the description of 𝐼𝐼𝑧𝑧∗(1). 
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Inductive Step. Assume, by way of strong induction, that the statement is true for 𝑚𝑚 = 2𝑧𝑧 + 1,⋯ ,𝑤𝑤. We 
need to show that the statement is true for 𝑚𝑚 = 𝑤𝑤 + 1. By Lemma 6, there exists an adversary that is 
𝐻𝐻𝑤𝑤+1−2𝑧𝑧+1-advantaged, namely one that follows the strategy of instance class 𝐼𝐼𝑧𝑧∗(𝑤𝑤 + 1). Now, consider 
the case in which 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵 deviates from the strategy of 𝐼𝐼𝑧𝑧∗(𝑤𝑤 + 1) on some arbitrary step 𝑘𝑘. Let 𝛽𝛽𝑘𝑘 =
{𝜎𝜎𝑘𝑘,1,⋯ ,𝜎𝜎𝑘𝑘,𝑙𝑙}, where 𝑙𝑙 ≥ 𝑧𝑧 and let 𝛽𝛽𝑘𝑘∗ = {𝜎𝜎𝑘𝑘∗,1,⋯ ,𝜎𝜎𝑘𝑘∗,𝑧𝑧,𝜎𝜎𝑘𝑘∗,𝑧𝑧+1} be the 𝑘𝑘th batch according to the 
strategy of 𝐼𝐼𝑧𝑧∗(𝑤𝑤 + 1). Further, denote 𝑆𝑆∩𝛽𝛽𝑘𝑘 = ⋂ 𝑆𝑆(𝜎𝜎𝑘𝑘,𝑞𝑞)𝑙𝑙

𝑞𝑞=1 , with 𝑡𝑡 = |𝑆𝑆∩𝛽𝛽𝑘𝑘|, as well as 𝑆𝑆∩𝛽𝛽𝑘𝑘∗ =
⋂ 𝑆𝑆(𝜎𝜎𝑘𝑘∗,𝑞𝑞)𝑧𝑧
𝑞𝑞=1  with 𝑟𝑟 = |𝑆𝑆∩𝛽𝛽𝑘𝑘∗ |. If 𝑆𝑆∩𝛽𝛽𝑘𝑘 ∩ 𝑆𝑆∩𝛽𝛽𝑘𝑘∗ = ∅, then the cost of the optimal offline solution increases 

by 1, which by Lemma 2 irrevocably decreases the advantage of 𝐴𝐴𝐴𝐴𝑉𝑉𝐵𝐵. Therefore, suppose that 𝐴𝐴𝐴𝐴𝑉𝑉𝐵𝐵 
reveals a batch 𝛽𝛽𝑘𝑘 such that 𝑆𝑆∩𝛽𝛽𝑘𝑘 ∩ 𝑆𝑆∩𝛽𝛽𝑘𝑘∗ ≠ ∅. Moreover, with non-zero probability 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵 disregards all 
𝑆𝑆𝑗𝑗 ∈ 𝑆𝑆(𝛽𝛽𝑘𝑘) ∖ 𝑆𝑆∩𝛽𝛽𝑘𝑘, so safely assume this is the case for the rest of the proof. Now, with non-zero probability 
𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵 disregards all 𝑆𝑆𝑗𝑗 ∈ 𝑆𝑆∩𝛽𝛽𝑘𝑘 ∖ 𝑆𝑆∩𝛽𝛽𝑘𝑘∗ , if any, making such deviation futile. Thus, safely assume that 
𝑆𝑆∩𝛽𝛽𝑘𝑘 ⊂ 𝑆𝑆∩𝛽𝛽𝑘𝑘∗ , implying that 𝑡𝑡 < 𝑟𝑟. Let 𝑘𝑘′ > 𝑘𝑘 be the first step after step 𝑘𝑘 such that 𝑆𝑆∩𝛽𝛽𝑘𝑘 ∩ 𝑆𝑆(𝛽𝛽𝑘𝑘′) ≠ ∅. 
As before, with non-zero probability 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵 disregards all 𝑆𝑆𝑗𝑗 ∈ 𝑆𝑆(𝛽𝛽𝑘𝑘′) ∖ 𝑆𝑆∩𝛽𝛽𝑘𝑘′, so safely assume that this is 
the case for the rest of the proof. Then, with non-zero probability 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵 also disregards any 𝑆𝑆𝑗𝑗 ∈ 𝑆𝑆∩𝛽𝛽𝑘𝑘′ ∖
𝑆𝑆∩𝛽𝛽𝑘𝑘, if any, so safely assume that 𝑆𝑆∩𝛽𝛽𝑘𝑘′ ⊂ 𝑆𝑆∩𝛽𝛽𝑘𝑘. Then, by the inductive hypothesis, given that batch 𝛽𝛽𝑘𝑘 
satisfied 𝑆𝑆∩𝛽𝛽𝑘𝑘 ⊂ 𝑆𝑆∩𝛽𝛽𝑘𝑘∗ , the best 𝐴𝐴𝐴𝐴𝑉𝑉𝐵𝐵 can do is to recreate 𝐼𝐼𝑧𝑧∗(𝑡𝑡) on the remainder of the steps, starting 
with 𝑘𝑘′. In particular, this requires 𝑆𝑆∩𝛽𝛽𝑘𝑘′ ⊂ 𝑆𝑆∩𝛽𝛽𝑘𝑘 and |𝑆𝑆∩𝛽𝛽𝑘𝑘′ | + 1 = |𝑆𝑆∩𝛽𝛽𝑘𝑘|. A symmetric argument can be 
made about concurrently recreating 𝐼𝐼𝑧𝑧∗(𝑟𝑟 − 𝑡𝑡) on the remainder of the steps, which is disjoint from 𝐼𝐼𝑧𝑧∗(𝑡𝑡) 
after the 𝑘𝑘th step and hence increases the offline solution by one. However, by Lemma 2, this achieves a 
strictly lower competitive advantage for 𝐴𝐴𝐴𝐴𝑉𝑉𝐵𝐵. 

Note that 𝐴𝐴𝐴𝐴𝑉𝑉𝐵𝐵 cannot be guaranteed to benefit from producing batches 𝛽𝛽𝑘𝑘 satisfying 𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽𝑘𝑘 ,𝑆𝑆) > 𝑧𝑧 
because with non-zero probability 𝐴𝐴𝐴𝐴𝐺𝐺𝐵𝐵 disregards any 𝑆𝑆𝑗𝑗 ∈ 𝑆𝑆(𝛽𝛽𝑘𝑘) ∖ 𝑆𝑆∩𝛽𝛽𝑘𝑘, making such deviation futile 
with non-zero probability. In fact, a larger VC-dimension would involve more sets, possibly making 𝑡𝑡 =
|𝑆𝑆∩𝛽𝛽𝑘𝑘| (and hence the attainable competitive advantage) smaller. Q.E.D. 


	1. Introduction
	1.1. Background
	1.2. Contributions
	1.3. Organization

	2. Preliminaries
	3. Fractional Online Set Cover
	4. Fractional Batched Set Cover
	4.1. General Case
	4.2. Restricted Adversary

	5. Batched Algorithms
	5.1. Analysis
	5.2. Computational Experiments

	Acknowledgments
	References
	Appendix
	Proof of Lemma 2
	Proof of Lemma 7




