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Identifying the Association between Built Environment and Heart Failure Progression Using 

Electronic Health Records  

 

Abstract 

Electronic health record (EHR) data have emerged as a longitudinal data source to uncover the associations between 

the environment and health. In this paper, we aim to identify built environment factors that are associated with heart 

failure (HF) progression using EHR. A cohort of HF patients in New York City (NYC) and initially had normal 

ejection fraction were identified. Patients’ EHR data were linked with public data on transportation, air quality, land 

use, and accessibility to identify built environment risk factors for HF progression across NYC and within NY 

Boroughs using mixed effects models. Increased distance to parks was found to have significant associations with 

HF progression in NYC, while controlling for demographics, comorbidities, and neighborhood poverty rates. Land 

use for retail and facility purposes were found to have significant associations within Brooklyn and Bronx. Insights 

from this study may help identify patients at higher risk for HF progression. 

Introduction 

Heart failure (HF) is a chronic, progressive condition where the heart cannot pump a sufficient volume of blood to 

satisfy the body’s required blood and oxygen.(1) Risk factors of HF include male sex, high blood pressure, coronary 

artery disease, diabetes, valvular heart disease, tobacco use, obesity, education level, and socioeconomic 

deprivation.(2-4) It is estimated that more than one-third of HF patients suffer from comorbidities, including 

diabetes, obesity, chronic kidney disease, chronic obstructive pulmonary disease, anemia, and sleep apnea.(5, 6) 

Progression of HF such as declined cardiac function and calcification of the heart is known to be affected by cardiac- 

and non-cardiac comorbidities.(3, 5) HF is one of the leading causes of morbidity and mortality in the US, and is 

associated with substantial healthcare expenditure.(7) Global prevalence is estimated to be more than 26 million 

and increase further with an aging population.(1) The disease manifests with symptoms including a persistent 

coughing, breathlessness, lower extremity edema, and fatigue. An indicator for diagnosing and managing HF is 

ejection fraction, a ratio of the amount of blood pumped out to the amount of blood left in the left ventricle with 

each contraction.(8) Ejection fraction is commonly measured using an echocardiogram test.    

 

HF is known to be associated with environmental risk factors through prior studies conducted using surveys, 

observational studies, and cohort follow-up studies.(9) Especially well-studied is the association between HF and 

air pollutants including particulate matter (PM) and nitrogen dioxide. HF incidence has been associated with 

particulate matter ≤2.5 μm in aerodynamic diameter (PM 2.5) in a 4-year prospective cohort study of women across 

US,(10) and an 11.5-year prospective cohort study in Europe. (11) HF mortality has been associated with PM 2.5 

particulate matter ≤2.5 μm in aerodynamic diameter in the Cancer Prevention Study II of 1.2 million adults over a 

16-year follow up.(12) HF-related hospitalization was associated with air pollutants including PM and nitrogen 

dioxide in a 12-year follow up study in Pittsburgh, Pennsylvania, as well as an observational study using national 

Medicare claims data from 1999 to 2002.(13, 14) Transportation-related risk factors for HF have also been reported 

in previous studies. HF mortality was associated with roadway proximity and noise volume in in 5-year follow up 

studies in Worcester, Massachusetts, a 9-year cohort study in the Netherlands, and a cross-sectional survey in 
Toronto, Canada, respectively.(15-17) Outcomes most frequently focused on these previous studies are disease 

incidence, mortality rates, and hospitalization rates. In comparison, how environmental factors affect the 

progression of HF is less studied.(18, 19)  

 

Aside from the physical environmental risk factors mentioned above, there remains a knowledge gap on the 

association between HF and other environmental factors, notably, the built environment factors. Built environment 

refers to the human-made environment through urban planning, ranging from buildings and parks that provide space 

for human activities, including daily living, spending, occupation, and recreation.(20) The built environment 

significantly affects public health through its role in providing safe shelter, access to resources such as food and 

transportation, and space for maintaining a healthy lifestyle. In this study, we propose to study the associations 



  

between the built environment and HF, while adjusting for known clinical, social and physical environmental risk 

factors. We aim to contribute to the evidence that may inform urban planning strategies for healthy heart health.  

 

Moreover, we propose to achieve our study goal using electronic health records (EHRs) as a source of longitudinal 

health data. By creating a linkage between EHRs and public data sources on the social, physical, and built 

environment, we aim to demonstrate that EHRs may facilitate an efficient extraction of detailed health information 

combined with information on the degree of exposure to non-clinical risk factors. In recent years, studies have 

started to adopt EHRs as a source of longitudinal data to study non-clinical risk factors.(21) Linked with 

environmental data sources through patients’ address information, EHR data have shown promise to help study the 

associations between social deprivation and cardiovascular diseases,(22) air pollution and cardiovascular events 

during the labor and delivery,(23) air pollution and asthma,(24) and socioeconomic status and obesity.(25)  

 

Leveraging the 10-year EHR data from a health system in New York City (NYC), in this study, we linked HF 

patients’ longitudinal clinical information in EHRs with public data on air pollution, transportation, land use, and 

accessibility. The goal of the study is to identify built environment risk factors that are associated with HF 

progression, notably, deteriorated cardiac function as measured by reduced ejection fraction. Mixed effects models 

were constructed to identify risk factors for the study cohort across NYC and within NYC Boroughs, respectively. 

To the best of our knowledge, this study is among the first to use EHRs to study the association of HF progression 

and built environment risk factors.  

 

This paper is organized as follows. We describe the data sources used in the study and modeling approaches in 

Methods and Data section. Descriptive statistics of the data and model results are described in Results section. We 

discuss findings, limitations and future work in Discussion section, and conclude the study in Conclusion section. 

 

Methods and Data 

Data were extracted from the EHR at Weill Cornell Medicine and NewYork-Presbyterian Hospital from 2007 to 

2018. The data extraction was approved by Weill Cornell Medicine Internal Review Board. EHR data were stored 

using the (Observational Medical Outcomes Partnership) OMOP common data model.(26) A total of 12801 adult 

patients with at least one diagnosis of heart failure (ICD-9-CM: 428* or ICD-10-CM: I50*) were identified. From 

the unstructured notes of the patients’ EHR, measurements for ejection fraction were extracted using a natural 

language processing pipeline at Weill Cornell Medicine.(27) In order to measure HF progression, we excluded 9907 

patients who did not have at least two ejection fraction measurements. The average days between patients’ first and 

last ejection fraction measurements is 1781 days, with a standard deviation of 1460 days. We excluded 1239 patients 

whose first and last EF measurements were taken fewer than one standard deviation above and below the mean 

difference in days. Furthermore, we removed 415 patients whose initial ejection fraction measurements were below 

normal as their already declined cardiac functions may lead them to have different lifestyles and affected by the 

built environment in a different fashion. Finally, 600 patients were excluded from the final study cohort as they did 

not have valid addresses required for geocoding in the 5 Boroughs of New York:  New York, Queens, Bronx, 

Brooklyn, and Staten Island. A total of 840 patients are left in the study cohort.  

 

 
Figure 1. Patient inclusion criteria 

 

Using definitions provided by the American Society of Echocardiography and the European Association of 

Cardiovascular Imaging (28), ejection fraction measurements were classified into 4 categories: normal (EF>51% in 



  

men and EF>53% in women), mildly abnormal (EF within 41% to 51% in men and EF within 41% to 53% in 

women), moderately abnormal (EF within 30% to 40%), and severely abnormal (EF<30%). Patient inclusion criteria 

are shown in Figure 1. Aside from ejection fraction, data elements extracted from patients’ EHR data include age, 

sex, race, body mass index (BMI), smoking (yes/no), diabetes (yes/no), valvular heart disease (yes/no), coronary 

artery disease (yes/no), primary care location, patients’ addresses, county of residence, and Federal Information 

Processing Standard (FIPS) code of residence. 

  

Geospatial analyses were conducted using patients addresses. More than 22% of the patients in our study cohort 

were found to have multiple addresses. The most recent address for each patient was used for linkage. Four 

indicators were defined to measure accessibility to public and active transportation and green spaces: distance to 

the nearest bus stop, distance to the nearest subway station, distance to the nearest park space, and distance to the 

nearest bike facility. The spatial data were obtained in shapefile formats from the official website of New York state 

on city planning (https://www1.nyc.gov/site/planning/data-maps/open-data.page). The shapefiles were then 

intersected with the patients geocoded address to first find the nearest facility using the “nearest” function in ArcGIS 

and then calculate the distance for every patient. The traffic data were obtained from the New York activity-

based travel demand model called the New York Best Practice Model (NYBPM) that includes traffic volume on 

highways, major arterials, and collector’s links along several other transportation measures.(29) The model predicts 

daily traffic volume in each roadway link for different type of vehicles including passenger vehicles, bus, taxi, and 

trucks. We grouped the traffic volumes into two groups: Light vehicle duty such as passenger vehicles and taxies, 

and heavy-duty vehicles such as buses and trucks as their externalities are considered to be different. The vehicle 

kilometer traveled within the 250, and 500 meters buffers were then calculated.(30) Figure 2 displays displaces to 

nearest parks and distribution of floor area ratio for retail use mapped across NYC. 

 

 
Figure 2. Distances to nearest park from patients’ home locations (left) and distribution of floor area ratio for retail 

use (RetFAR) (right) 

Three indicators were defined to measure the role of land use including Land Use Mix (LUM) index, floor area 

ratio, and street connectivity. Three indicators together measure walkability and availability and variety of resources 

within 500 meters of each patient’s home location. The land use data were extracted from the parcel shapefile from 

the city planning section of the official website of New York state (https://www1.nyc.gov/site/planning/data-

maps/open-data.page) which include information about land use type at the parcel level. The LUM index measures 

the heterogeneity of land uses around an area of interest and ranges between 0 to 1, where 0 represents homogeneity 

and 1 represents maximum heterogeneity.(31) Higher LUM values indicate higher walkability of the area and it is 

believed to have positive impacts on public health. Four types of floor area ratio were computed: retail floor area 

ratio, residential floor area ratio, commercial floor area ratio, and facility floor area ratio.(32) The floor area ratio 

is building floor area divided by land area. For example, the areas with a higher share of parking space have lower 

retail floor area ratio values while areas with smaller setbacks from the street has higher values. The areas with 

 

https://www1.nyc.gov/site/planning/data-maps/open-data.page
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higher floor area ratio are believed to promote walkability. The number of intersections within 500 meters of 

patients’ home location is the third land use indicator used to measure the walkability and connectivity of the 

neighborhood. As an indicator for street connectivity, the number of intersections was extracted from the 

transportation network developed for the NYBPM travel demand model.(29) Patient’s exposure to two marker air 

pollutants, PM2.5 and nitrogen dioxide (NO2) were estimated using the Land Use Regression (LUR) model 

obtained from the Center for Air, Climate and Energy Solutions which estimated the pollutant concentration at the 

block group level using LUR models.(33) The two air pollutants together could cover both regional and local air 

pollution hotspots. Figures 1 displays the distances to the nearest park from patients’ home locations, and 

distribution of floor area ratio for retail use in our study cohort.  

 

Clinical and environmental variables above were used to construct mixed effects models with fixed and random 

effects to elicit factors associated with HF progression. Mixed effects models are extensions to the regression model 

but allow for hierarchies in the data that arise from data points occurring in groups. The intra- and inter-group 

variability can be accounted for by designating fixed and random effects.(34) In this paper, the response variable is 

a binary indicator for disease progression and declined cardiac function, as defined by the reduced EF measurement. 

Fixed effect variables considered include patient-level information: age, sex, race, body mass index (BMI), smoking 

(yes/no), diabetes (yes/no), valvular heart disease (yes/no), coronary artery disease (yes/no); and built environment 

information: floor area ratio for residential use, floor area ratio for facility use, floor area ratio for commercial use, 

floor area ratio area ratio for retail use, LUM index, number of intersections, daily PM 2.5 concentration (ug/m3), 

daily NO2 concentration (ug/m3), light-duty vehicle in 250m/500m buffer in kilometer, heavy-duty vehicle in 

250m/500m buffer in kilometer, distance (ft) to nearest bus stops, distance (ft) to nearest parks, distance (ft) to 

nearest subway stops, distance (ft) to nearest bike paths. A random effect for clinics is included in the model to 

control for the possible care variations across patients’ different primary care locations. The model was constructed 

for all study cohort, and also by NYC Boroughs as separate models. Tests for correlations and multicollinearity 

among variables were tested using the Variance Inflation Factor. Backward elimination was performed for variable 

selection. Models were constructed using Stata’s generalized structural equation model.(35) All continuous data 

were standardized by subtracting the data points by the mean and divided by standard deviation. Missing data were 

imputed using multiple imputations.(36)  

 

Results 

Table 1 lists the variable categorized by outcome defined as HF progression. Majority of the patients were 

hypertensive so we omitted the variable. We tested univariate variable significance with respect to the outcome 

using Chi-Square test for categorical variables, and analysis of variance (ANOVA) for continuous variables.  

 

Table 1. Descriptive patient characteristics. * indicates p-value <0.05 in Chi-square test or ANOVA 

 Progression 

Variable (standard deviation) No (n=646) Yes (n=189) 

Sex*   

Female 337 65 

Male 
 

 

 

 

 

 

 

309 124 

Race   

Asian 41 10 

Black or African American 

 

112 32 

White 

 

233 72 

Unknown 101 27 

Other 159 48 

Age* 74.1 (0.44) 72.2 (0.92) 

BMI 36.4 (2.73) 39.5 (8.90) 

Smoking   



  

No 633 186 

At least one pack per day 16 5 

Valvular heart disease*   

0 251 57 

1 398 134 

Coronary artery disease   

0 394 114 

1 255 77 

Diabetes   

0 319 80 

1 327 109 

Poverty rate* 18.5% (0.5%) 21.5% (1.1%) 

floor area ratio for residential use 1.61 (0.060) 1.57 (0.104) 

floor area ratio for commercial use 0.12 (0.006) 0.12 (0.011) 

floor area ratio for retail use 0.12 (0.006) 0.12 (0.011) 

floor area ratio for facility use 0.95 (0.060) 0.86 (0.106) 

LUM index 8221463 (378104) 7842812 (677223) 

Number of intersections 11.3 (0.31) 11.3 (0.56) 

distance (ft) to nearest bus stops 346 (16.4) 324 (19.9) 

distance (ft) to nearest subway stops 1869 (92.2) 1773 (130.2) 

distance (ft) to nearest parks 704 (20.7) 742 (37.7) 

distance (ft) to nearest bike paths 633 (40.0) 642 (64.6) 

daily PM 2.5 concentration (ug/m3)  9.21 (0.019) 9.24 (0.036) 

daily NO2 concentration (ug/m3)  19.3 (0.105) 19.5 (0.180) 

light duty vehicle in 250m buffer in kilometer 26248 (1498) 24685 (2563) 

heavy duty vehicle in 250m buffer in kilometer 3427 (179) 3508 (314) 

light duty vehicle in 500m buffer in kilometer 258061 (14067) 246423 (23275) 

heavy duty vehicle in 500m buffer in kilometer 32247 (1735) 33110 (3192) 

 

Results from the mixed effects model for the entire study cohort are shown in Table 2. As in previous literature, we 

find that male sex, valvular heart disease, and poverty rate within census tract are adversely associated with HF 

progression. In terms of patient-level information, we also find that increased age, Asian race and other race are 

positively associated with HF progression. Increase in the distance (ft) to nearest parks was found to be adversely 

associated with HF progression. 

 

Table 2. Mixed effects model for progression of ejection fraction. (N=840) *: p-value<0.05  
Odds ratio P-value [95% Conf. Interval] 

Male (vs. Female) 1.136 0.000* 1.083 1.191 

Race (Base: White) 
    

Asian 0.914 0.031* 0.842 0.992 

Black 0.983 0.590 0.925 1.045 

Declined 0.958 0.276 0.887 1.035 

Other 0.948 0.047* 0.900 0.999 

Age 0.974 0.023* 0.953 0.996 

BMI 1.000 0.333 1.000 1.000 



  

Valvular heart disease 1.063 0.013* 1.013 1.115 

Coronary artery disease 0.987 0.676 0.931 1.048 

Diabetes 1.052 0.084 0.993 1.115 

Census tract poverty rate 1.044 0.005* 1.013 1.076 

floor area ratio for residential use 0.983 0.401 0.943 1.024 

floor area ratio for retail use 1.000 0.988 0.958 1.044 

floor area ratio for facility use 0.991 0.590 0.958 1.024 

LUM index 1.011 0.628 0.967 1.057 

distance (ft) to nearest bus stops 0.999 0.924 0.985 1.013 

distance (ft) to nearest subway stops 0.998 0.925 0.955 1.043 

distance (ft) to nearest parks 1.025 0.034* 1.002 1.048 

distance (ft) to nearest bike paths 0.998 0.879 0.975 1.022 

daily NO2 concentration (ug/m3) 1.023 0.237 0.985 1.063 

light duty vehicle in 250m buffer in kilometer 0.984 0.341 0.951 1.017 

heavy duty vehicle in 250m buffer in kilometer 1.022 0.373 0.975 1.071 

_cons 1.118 0.000 1.057 1.183 

 

We performed subgroup analyses for Manhattan, Brooklyn, and Bronx as these three boroughs are considered to 

have varying neighborhood characteristics and built environments. The number of variables in the mixed effects 

model was reduced to accommodate for reduced sample size in the subgroup analyses. Results for patients with 

home addresses in Manhattan are shown in Table 3. Same as the main model, we find that male sex and poverty 

rate within census tract are adversely associated with HF progression. Asian race remains positively associated with 

HF progression in addition to declined race information. No built environment factors were found to be associated 

with HF progression. 

 

Table 3. Within Manhattan: Mixed effects model for progression of ejection fraction. (N=461) *: p-value<0.05  
Odds ratio P-value [95% Conf. Interval] 

Male (vs. Female) 1.107 0.004* 1.032 1.187 

Race (Base: White) 
    

Asian 0.865 0.003* 0.786 0.953 

Black 0.955 0.416 0.854 1.067 

Declined 0.904 0.030* 0.825 0.990 

Other 0.943 0.217 0.858 1.035 

Age 0.985 0.474 0.945 1.026 

BMI 1.000 0.791 0.999 1.001 

Valvular heart disease 1.051 0.169 0.979 1.128 

Coronary artery disease 1.042 0.232 0.974 1.115 

Census tract poverty rate 1.124 0.000* 1.077 1.173 

floor area ratio for retail use 0.988 0.551 0.949 1.028 

floor area ratio for facility use 1.006 0.734 0.970 1.044 

LUM index 1.015 0.515 0.970 1.062 



  

distance (ft) to nearest parks 1.042 0.203 0.978 1.109 

_cons 1.219 0.000 1.112 1.336 

 

Results from the mixed effects model for patients with home addresses in Brooklyn are shown in Table 4. Male sex 

and increased neighborhood poverty rate are adversely associated with HF progression. Asian race and other race 

are positively associated with HF progression. Increase in the floor area ratio for retail use and LUM index were 

found to be adversely and positively associated with HF progression, respectively. Increased floor area ratio for 

retail use indicates a denser retail land use, while an increase in LUM index reflects better walkability in a 

neighborhood. While not statistically significant, having valvular disease was found to be adversely associated with 

HF progression with a p-value of 0.051.  

 

Table 4. Within Brooklyn: Mixed effects model for progression of ejection fraction. (N=202) *: p-value<0.05  
Odds ratio P-value [95% Conf. Interval] 

Male (vs. Female) 1.149 0.000* 1.081 1.223 

Race (Base: White) 
    

Asian 0.744 0.000* 0.659 0.840 

Black 0.976 0.703 0.860 1.107 

Declined 1.019 0.835 0.853 1.217 

Other 0.859 0.034* 0.746 0.989 

Age 0.985 0.731 0.903 1.074 

BMI 0.999 0.543 0.995 1.002 

Valvular heart disease 1.087 0.051 1.000 1.182 

Coronary artery disease 0.954 0.413 0.853 1.068 

Census tract poverty rate 1.008 0.769 0.957 1.061 

floor area ratio for retail use 1.274 0.009* 1.061 1.529 

floor area ratio for facility use 0.923 0.614 0.675 1.261 

LUM index 0.510 0.000* 0.385 0.676 

distance (ft) to nearest parks 0.989 0.552 0.952 1.027 

_cons 0.802 0.132 0.602 1.069 

 

Lastly, results from the mixed effects model for patients with home addresses in Bronx are shown in Table 5. Male 

sex and having valvular heart disease are adversely associated with HF progression. Increased age, Asian race and 

other race are positively associated with HF progression. Increase in the floor area ratio for facility use was found 

to be positively associated with HF progression, while increased LUM index and distance (ft) to nearest parks were 

found to be adversely associated with HF progression. Same as the main model, increased distance to the nearest 

parks is also found to be adversely associated with HF progression. 

 

Table 5. Within Bronx: Mixed effects model for progression of ejection fraction. (N=94) *: p-value<0.05  
Odds ratio P-value [95% Conf. Interval] 

Male (vs. Female) 1.240 0.004* 1.073 1.433 

Race (Base: White) 
    

Asian 0.831 0.041* 0.696 0.992 

Black 1.162 0.036* 1.010 1.337 



  

Declined 1.205 0.209 0.901 1.612 

Other 1.231 0.012* 1.047 1.447 

Age 0.932 0.033* 0.874 0.994 

BMI 0.999 0.198 0.997 1.001 

Valvular heart disease 1.271 0.013* 1.052 1.536 

Coronary artery disease 0.920 0.115 0.829 1.021 

Census tract poverty rate 0.965 0.206 0.914 1.020 

floor area ratio for retail use 0.963 0.776 0.740 1.252 

floor area ratio for facility use 0.424 0.000* 0.287 0.628 

LUM index 4.800 0.000* 2.806 8.212 

distance (ft) to nearest parks 1.125 0.003* 1.040 1.217 

_cons 1.845 0.008 1.172 2.905 

 

Discussion 

We identified and confirmed factors reported from previous literature, including male sex, valvular disease, and 

poverty rate. In addition, our models consistently found Asian race to be positively associated with HF progression. 

Several built environment factors were found to be associated with the outcome, including distance to nearest parks, 

floor area ratio for retail use, floor area ratio for facility use, and LUM index. To the best of our knowledge, these 

associations have not been reported in previous literature. Interestingly, the patterns of the associations differ 

between NY Boroughs. In Manhattan, land use variables were not significant factors, possibly due to the similar 

nature of the land use across Manhattan. In Brooklyn, higher LUM index, an indicator for better walkability was 

positively associated with HF progression, but a higher floor area ratio for retail use was negatively associated with 

the outcome. In Bronx, higher LUM index was associated with negative outcome whereas higher floor area ratio 

for facility use was positively associated. Further investigations on the types of retail stores, such as grocery stores 

vs. convenience stores, in addition to facility types, may better explain these associations.  

 

There is an opportunity that models created using EHR data and their findings may be integrated with the EHR’s 

clinical decision support system. While healthcare service providers may not be familiar with the individual 

neighborhoods that patients reside in, information about the land use and availability of resources are readily 

available through governmental agencies. These insights may allow early identifications of HF patients who can 

benefit from more monitoring and support to improve healthcare delivery and patient outcomes 

 

Limitations 

A number of limitations exist in the study. First, the EHR data used for the study are limited to one health system, 

although patients may visit multiple outpatient clinics within the system. Thus, it is possible that crucial health 

information is missing if patients were treated outside the health system during the study period. In addition, while 

EHR and public data linkage were done using individual home addresses, we are not able to explain the 

environmental exposure for activities such as work and school outside the residence. In addition, since most recent 

addresses were used for geocoding, we are not able to account for changes due to moving or study the effect of the 

moving during the study period. Moreover, there are factors that were not considered in the study, such as patient-

level income, family support, occupation, stress level, and living in high vs. low rise floors that may contribute to 

HF progression. Future work will aim to elicit this information by examining unstructured notes. Furthermore, 

because of the relatively narrow geographical area covered in this study (NYC), we were not able to identify 

significant differences in air quality and traffic volume. Future work may use larger national datasets which provide 

observations across areas with distinct geographical and neighborhood characteristics. 

 

Conclusions 



  

In this study, we demonstrate that EHR data can be linked with public data sources to study the associations of HF 

progression and built environment factors while adjusting for patient-level, social, and physical environmental 

factors. This approach may lead to future integration of public data sources with EHR as a form of clinical decision 

support. 
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Study 2: Policy Lessons on Urban and Transportation Planning: New Evidences on 

the Impacts of Environmental and Social Determinants on Heart Failure in New 

York City 
 

Abstract 

Background: Health concerns are one of the main challenges in the world’s agenda to tackle. Where people live 

could both, directly and indirectly, affect their well-being. The role of the built environment on the incidence of 

NCDs and in particular cardiovascular diseases, therefore, has drawn attention from researchers. However, there is 

no comprehensive investigation on the role of built environment factors on health outcomes that could help to 

highlight the importance of integrated health and urban planning. 

Objectives: We aim to evaluate the role of built environment in public health in a more accurate and comprehensive 

way than the existing studies; and providing urban policy implications that aimed improving public health. The 

study also intends to find what built environment factors should be planned for in the favor of improving public 

health 

Results: Among the built environment factors, land use, traffic, and air pollution measures significantly increase 

the risk of death in heart failure patients by 47.2%, 35% and 14%, respectively. Surprisingly proving access to 

public transit, green space, and active transportation do to significant attenuate odds of death in HF patients. The 

confiding factors such as household income play a vital role in finding the 

Discussions: The findings imply that the smart growth strategies including compact development do not necessarily 

improve public health. the results have two major implications; first, combining smart growth strategies with 

technology solutions such as fleet electrification in order to balance out the benefits of placing people close to high 

amount of pollution; second, urban infrastructure can enhance public health if being blended at the early planning 

stages so the complex interactions being accounted for. 

 

Key words: Public Health, Built Environment, Heart Failure, Urban Infrastructure Systems 

 

 

Introduction 

 

Health concerns are one of the main challenges in the world’s agenda to tackle. The global population will reach to 

10 billion by 2050 and with 22% of them expected to be above 65 years old, a significant increase from 8% in 2015 

(United Nation), health challenges will draw more attention in the future world. Noncommunicable diseases (NCDs) 

are the leading cause of death around the world by causing about 40.5 millions out of the 56.9 million annual deaths 

in 2016, an 33% increase from 30.1 million in 2000 (World Health Organization, 20180). The cumulative costs of 

NCDs in the 20 years from 2011 to 2030 could reach to $47 trillion dollar (Bloom et al., 2012). Among NCDs, 

cardiovascular diseases are the leading contributor that count for 17.9 million annual deaths. Preventive measures, 

therefore, have drawn researchers’ attention to improve public well-being and avoid tremendous costs on health 

system.  

There exist two types of the risk factors: unmodifiable factors such as age, gender, race and ethnicity, and 

family history, and modifiable risk factors such as obesity, tobacco and alcohol use, environmental factors such as 

exposure to air and noise pollution, and access to healthy food. As an example of an unmodifiable factor, previous 

study found a higher 40-year cumulative incidence of hypertension as a cardiovascular risk factor among Black 

versus Asian people, 92.7% and 84.1%, respectively (Benjamin et al., 2017). However, it is reported that 70% of 

cardiovascular diseases are attributable to modifiable risk factors (Ezzati and Lopez, 2003). For example, Roux Av 

et al., 2001 (Diez Roux, 2001) found that low income people, regardless of their race, have 2 to 3 times greater risk 

of coronary heart disease.  



  

Where people live could both, directly and indirectly, affect their well-being. Exposure to air, noise 

pollution and socioeconomic status of a neighborhood are among built environment factors that directly cause 

several negative health outcomes such as lung cancer, asthma, and birth defects (HEI, 2010; Hoffmann et al., 2007; 

Tonne et al., 2007). For instance, Chum and O’Campo (Chum and O’Campo, 2015) found that violent crimes, noise, 

and proximity to major roads increase the odds of cardiovascular diseases after controlling for smoking, drinking, 

age, gender, education, income, physical activity, and BMI. On the other hand, built environment can indirectly 

deteriorate public health. Physical inactivity, for example, is one of the factors believed to be responsible for range 

of NCDs such as obesity, diabetes, and cardiovascular diseases. Factors such as density of fast food restaurant, 

grocery stores, walkability of neighborhood, access to the green space areas, and the type of land use in the 

neighborhood are believed to affect physical activity. Casagrande et al., showed that people who are exposed to 

traffic, have access to proper sidewalks, and are safe from crime have more chance of being physically active. Other 

built environment factors are believed to affect the risk of cardiovascular diseases including street lighting at night, 

unattended dogs, places within walking distance, places to exercise, hills, enjoyable scenery, access to services, 

residential density, street connectivity, land use mix, characteristics of neighborhood, store density, population 

density, and access to public transit (Adams et al., 2012; Casagrande et al., 2009; Renalds et al., 2010; Witten et al., 

2012). 

The role of the built environment on the incidence of NCDs, therefore, has drawn attention from researchers 

(Malambo et al., 2016). The built environment policies are even believed to be more effective than individual factors 

in promoting public health (Diez Roux, 2003). Transportation and land use policies in urban areas are therefore 

among the levers that could be employed by policymakers to improve public health. Land use can both directly and 

indirectly affect public health. Residential and job locations can affect public health by reducing the need to travel 

and thus affect air quality and risk of vehicle accidents and also increasing active mode shares. For instance, Brown 

et al (Brownson et al., 2009) has shown that a quartile increases in land use mix index that indicates walkability of 

a neighborhood is associated with 12.2% reduction in the risk of obesity. Powell et al., (Powell et al., 2007) showed 

that increasing the chain supermarket outlet by one unit per 10,000 capita, can reduce BMI by 0.11 units, but one 

unit increase in convenience store per 10,000 capital can increase BMI by 0.03 units. Women who have access to 

fast food restaurants in their neighborhood have 13% higher stroke risk (Hamano et al., 2013). 

The more the vehicle mode share dominates the transportation systems, the less people walk and bike for 

their daily trip. On the other hand, domination of single occupancy vehicles in urban transportation exacerbates the 

air and noise pollution and road injuries, it can decrease the physical activity by discouraging walkability 

(Srinivasan et al., 2003). Transportation is responsible for a significant part of ambient air pollution in urban areas 

and exposure to vehicle emission has been associated with several health outcomes such as asthma in children and 

preterm labor, cardiovascular diseases, respiratory disease and lung cancer. In particular, the report by Collaborative 

on Health and the Environment (CHE) finds strong evidence on exposure to particulate air pollution and 

cardiovascular disease. Kan et al., (Kan et al., 2008) find that high traffic density and distance to major roads are 

associated with coronary heart diseases and in particular those who live within 300m of major roads has 12% more 

chance of developing CHD. Previous research has shown that access to transit systems or access to active 

transportation infrastructure such as proper sidewalks or bicycle paths can damp the probability of using personal 

vehicle for daily commuting trips. Therefore, promoting active transportation not only can reduce obesity and 

diabetes by increasing daily activity, but also can play an important role in improving air quality. For instance, one 

hour increase in daily driving can increase the risk of obesity by 6% (Frank et al., 2004).  

Despite the discussed evidences on the association between built environment and health and in particular 

cardiovascular diseases, still there is a need for more rigorous empirical evidence to support the need for policy 

changes including hypothetical testing on the association and measurement improvements (Diez Roux, 2003). 

Existing literature mostly focus on the association between physical activity, active transportation, and obesity, but 

not the direct impact of built environment on cardiovascular diseases. There is no comprehensive investigation on 

the role of built environment factors on cardiovascular diseases (Chum and O’Campo, 2015). Prior studies mostly 

focus on one aspect of built environment factors, such as traffic air pollution. The literature survey by Malambi et 

al., revealed that only 17% of existing studies devoted to the direct impacts of built environment on cardiovascular 

diseases (Malambo et al., 2016). Beside the lack of direct investigation on the role of built environment, the few 

available studies also face technical imperfection. They may overlook the impact of the built environment factors 



  

on public health by using low resolution data for both the dependent and independent variables. The combination 

of low-resolution data at both ends can propagate the errors and mask the true impacts. This is also important since 

some factors may affect the health condition through a direct-causation relation, others may play a confounder role. 

While the existing studies usually obtained patients’ data at the coarse levels such as zip code level, they also 

estimate the independent variables’ values such as access to sidewalks or exposure to vehicle emission at low 

resolution scale. For instance, Jerrette et al., (Jerrett et al., 2009) used postal code addresses in Toronto among with 

LUR model to predict air pollution; Finkelstein et al (Finkelstein et al., 2004) used postal codes to derive mean air 

pollution and proximity to road; and Beelen et al (Beelen et al., 2008) used home address for patients in Netherlands 

(1987-1996). 

The contribution of our study is twofold: evaluating the role of built environment in public health in a more 

accurate and comprehensive way than the existing studies; and providing urban policy implications that are aimed 

at improving public health. We aim to find what built environment factors should be planned for in the favor of 

improving public health. For this purpose, we evaluate how built environment and social determents are associated 

with the death of heart failure (HF) patients in New York area. Finding the significant associations, we then propose 

urban policies that could help to boost public health.  

 

MATERIAL and METHODS 

We studied how built environment affect the risk of death in HF patients. two types of risk factors: individual and 

built environment factors.  

Study Population 

Study population were extracted from the electronic health record (EHR) at Weill Cornell Medicine and New York-

Presbyterian Hospital from 2012 to 2017 on 12610 adult patients with at least one diagnosis of heart failure (ICD-

9-CM: 428.*). The dataset initially included age, gender, smoking status, street address, ethnicity, and BMI. From 

the initial datasets 10,630 were geocoded by converting the street location address to longitude and latitude, and the 

rest where exclude from the dataset due to lack of a valid address. The dataset then was modified according to the 

covariate under study and thus number of observations then were excluded because of the wrong data entry for 

different covariates. The spatial analyses were conducted in ArcMap 10.5 and statistical analyses were performed 

with R-3.4.4. 

Individual Covariates 

Besides age, gender, ethnicity, smoking, and BMI covariates from EHR, the rest of socioeconomic data including 

median household income, and violent crime rate is obtained from TIGER products of US Census Bureau data at 

the block group level. To obtain data, the patients address layer is overlapped with the block group shapefile. The 

patients’ median household income is assumed to be equal to the median household income of the block group in 

which the person resides. The TIGER data provides the percentage of people in each block with a specific level of 

education: no school, high school but no degree, high school or General Educational Development (GED), some 

college degree, college degree, master’s degree and above, and others. To obtain patients’ education level, two 

categories are defined: primary education and college or higher. The patient is assumed to be in one of the two 

categories if the resident’s block has higher than 50% of each of the two categories. During our analysis, we 

removed those patients with BMI higher than 60 and those who death date was before 2012, which we believe was 

due to error in data entry. Death is obtained using the social security death index. 

Built Environment Covariates  

Accessibility Measures: 

Four indicators where defined to measure accessibility to public and active transportation and green spaces: distance 

to the nearest bus stop, distance to the nearest subway station, distance to the nearest park space, and distance to the 

nearest bike facility. The spatial data were obtained in shapefile formats from the official website of New York state 

(“The Official Website of New York State,” 2018). The shapefiles were then intersected with the patients geocoded 



  

address to first find the nearest facility using the “nearest” function in ArcMap and then calculate the distance to it 

for every patient.  

Exposure to Traffic Measures 

The traffic data were obtained from the New York activity-based travel demand model called the New York Best 

Practice Model (NYBPM) that includes traffic volume on highways, major arterials, and collectors’ links along 

several other transportation measures. The model predicts daily traffic volume in each roadway link for different 

type of vehicles including passenger vehicles, bus, taxi, and trucks. The externalities from light and heavy-duty 

vehicles are unalike, and literature suggest separating them to study their negative health impacts. Thus, we grouped 

the traffic volumes into two groups: light vehicle duty (passenger vehicles and taxies), and heavy-duty vehicles 

(buses and trucks). The Vehicle Kilometer Traveled within the 250, and 500 meters buffers (Karner et al., 2010) 

were then calculated.  

Walkability 

Three indicators were defined to measure the role of land use on risk of death in heart failure patients including 

Land Use Mix (LUM) index, retail floor area ratio, and street connectivity. Three indicators together measure 

walkability and availability and variety of destinations within 500 meter of each patient’s home location. The land 

use data were extracted from the parcel shapefile from the official website of New York state which include 

information about land use type at parcel level. The LUM index measures the heterogeneity of land uses around an 

area of interest and ranges between 0 to 1, where 0 represents homogeneity and 1 represents maximum 

heterogeneity. Higher LUM values indicates higher walkability of the area and it is believed to have positive impacts 

on public health. 

𝐿𝑈𝑀 =
−∑ (𝑃𝑖 ln 𝑃𝑖)

𝑛
𝑖=1

ln𝑁
 

where i is the land use categories, and P is the proportion of the land area of each land use category, and N is the 

number of land use categories.  

The Retail Floor Area Ratio (RetFAR) is retail building floor area divide by retail land area. The areas with higher 

share of parking space have lower RetFAR values while areas with smaller setbacks from the street has higher 

values. The areas with higher RetFAR are believed to promote walkability and, therefore, improve public health. 

The number of intersections is the third land use indicator used to measure the walkability of the neighborhood that 

could affect heart failure. The number of intersections where extracted from the transportation network developed 

for the NYBPM travel demand model.  

Air pollution  

Two methods were deployed to estimate patient’s exposure to two marker air pollutants: Land Use Regression 

(LUR) model and air monitoring model; the PM2.5 which is believed to affect human health and NO2 as a marker 

for traffic pollution. The two air pollutants together could cover both regional and local air pollution hotspots. Both 

PM2.5 and NO2 estimates were obtained from the Center for Air, Climate and Energy Solutions (Kim et al., 

2018) which estimated the pollutant concentration at the block group level using LUR models. We also use PM2.5 

from air monitoring stations as the most common method used in epidemiological studies to estimate impact of air 

pollution on public health. Besides the differences that the two methods may cause in our analysis, we were 

interested to evaluate if air quality methods could alter the epidemiology outcomes.  

Statistical analysis 

The association between exposure to different kinds of built environment factors and risk of death in heart failure 

patients first is estimated using the unadjusted odds ratio for different ranges of exposure. Except for gender, BMI, 

ethnicity, education and accessibility measure the quartiles of exposures are used to calculate the odds ratios while 

the first quartile is assumed to be the base condition. While gender, education and ethnicity were modeled as binary 

exposure variables, the biomedical definition of obesity is used to estimate odd ratio for different BMI values. For 

accessibility measures, 200 and 400 meters were considered as exposure threshold since they are plausible walking 

distance to get access to those facilities. Considering that the patients’ information has different sources, the 

controlling could reduce the size of the sample due to unavailability of data at different levels. Therefore, the second 

model calculates the adjusted odds ratio controlling for ages, BMI, gender, and smoking status. The fully adjusted 



  

model with 5,402 observation calculates the odds ratio controlled for age, gender, smoking, BMI, ethnicity, income, 

crime, education using the regression modeling.  

Results 

The patients profile reveals that more than the half of the patients, 55%, are men, only 10% of them are Latino, 

most of them have some level of higher education, and about 34% of them are smokers (Table 1). Expectedly, the 

HF patients are older than the average population, about 71 years old. The median patient’s household income is 

higher than the average New York state population and also than the average US population as well, $70,009 versus 

$61,741, $60,052, respectively. On average, the patients are considered overweight with the BMI of 28.5. The 

majority of the patients live in a close proximity of the public and active transportation facilities, considering the 

200 m walking threshold. Living in one the most congested areas in the world, make the patients’ average air 

pollution close to the US EPA PM2.5 10ug/m3 thresholds.  

Table 1. Descriptive Statistics  

 Number %  

Gender(n=9908)   

Male 5750 55.03% 

Female 4158 41.97% 

Ethnicity(n=9908)   

Latino 1028 10.38% 

Not Latino 8880 89.62% 

Education(n=5402)   

Primary Education 791 14.64% 

College and Higher 4611 85.36% 

Smoking(n=9908)   

Smokers 3363 33.94% 

Non-Smokers 6545 66.06% 

 Mean 95% CI 

Individual    

Age(n=8951) 71.03 (70.77, 71.30) 

Annual Household Median Income ($) (n=5402) 70,009 (69,093, 70,926) 

BMI(n=9274) 28.5 (28.4, 28.6) 

Accessibility (Meter)(n=7812)   

Distance to the nearest Bike facility (ft) 229.4 (221.9 236.9) 

Distance to the nearest Subway Station (ft) 634.7 (616.1, 653.2) 

Distance to the nearest Bus Station (ft) 109.5 (106.8, 112.1) 

Distance to the nearest Park Space (ft) 222.5 (218.9, 226.0) 

Transportation(n=10360)   

Light Duty Vehicles VKT in 250 m buffer 1,8510 (17910, 19113) 

Heavy Duty Vehicles VKT in 250 m buffer 2,378 (2299, 2457) 

Light Duty Vehicles VKT in 500 m buffer 178,862 (172983, 184741) 

Heavy Duty Vehicles VKT in 500 m buffer 22,140 (21375, 22906) 

Land Use (Square Mile) (n=7839)   

Building Area 1.67 (1.62, 2.06) 

Commercial Area 0.64 (0.62, 0.67) 

Residential Area 0.99 (0.97, 1.02) 

Office Area 0.28 (0.27, 0.30) 

Retail Area 0.07 (0.07, 0.08) 

Storage Area 0.011 (0.011, 0.012) 

Factory Area 0.004 (0.004, 0.005) 

Ret Far 0.120 (0.115, 0.123) 



  

LUM 0.599 (0.596, 0.604) 

Number of Intersections in 500 m 10.7 (10.5, 10.8) 

Air pollution(n=10360)   

PM2.5-Air Quality Monitoring (ug/m3) 7.94 (7.92, 7.96) 

PM2.5- LUR Model (ug/m3) 8.96 (8.94, 8.97) 

NO2- LUR Model (ug/m3) 16.72 (16.63, 16.82) 

Safety(n=5402)   

Total Housing Violation per 1,000 Population 0.56 (0.54, 0.58) 

Felony per 1,000 Population 104.95 (103.25, 106.65) 

 

Except for the patients in the highest income quartile, the rest of socioeconomic characteristics are not significantly 

associated with risk of death in HF patients. Interestingly, individuals with very low BMI had a 50% higher risk of 

death but those with higher than average BMI had a 26%-33% lower risk of death. This is similar to the findings 

by Lavie et al., (Lavie et al., 2009), where they reported higher survival rate for cardiovascular patients with higher 

BMI. 

Surprisingly, accessibility to public transportation, green space, or bike facilities were not correlated with risk of 

death in HF patients. HF patients who live in areas with the highest light and heavy-duty vehicles activity within 

500 meters buffer around their residence have faced significantly higher risk of death, between 11% to 16%.  

  
(a) (b) 

  
(c) (d) 

Figure 1 The Vehicle Kilometer Traveled; a) light duty vehicle in 250 m buffer, b) heavy duty vehicle in 250 m 

buffer, c) light duty vehicle in 500 m buffer, d) heavy duty vehicle in 250 m buffer 



  

 

More importantly, those who live in the core urban areas with higher LUM index and higher RetFAR, have 

significantly higher risk of death, 21% and 29%, respectively. Furthermore, we find that there exists a significant 

association between NO2 concentration and heavy vehicle activity within 500-meter buffers with Pearson 

correlation of 0.43, and between RetFAR and heavy VKT in 500-meter buffer r=0.47. However, finding no 

significant ORs for air pollution variables while finding significant correlation between air pollution, land use and 

transportation covariates, suggest the existence of confounder variables.  

 

  

(a) (b) 

Figure 2 The average daily air pollution concentration; a) NO2, b) PM2.5 
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Figure 3 The Walkability measures; a) Land Use Mix Index, b) # of Intersections, c) RetFAR 

 

 

Table 2. Odds Ratio of Death in Heart Failure Patients 

 Dead Alive Unadjusted ORs (95% 

confidence interval) 

Socioeconomic    

Gender (n = 9908)    

Female 703 3455 1 

Male 915 4835 0.93 (0.84, 1.04) 

BMI (n = 9274)    

=<18.5 53 147 1.50 (1.08, 2.09) 

18.5 – 24.9 545 2276 - 

24.9 – 29.9  460 2605 0.74 (0.64, 0.84) 

>= 29.9  438 2750 0.67 (0.58, 0.76) 

Ethnicity (n=9908)    

Not Hispanic or Latino 1464 7416 1 

Hispanic or Latino 154 874 0.89 (0.74, 1.07) 

Education(n=5402)    

College or Higher  691 3920 1 

Preliminary Education 108 683 1.11 (0.90, 1.39) 

Smoking (n=9908)    

Non-smokers 12 49 1 

Smokers 702 3934 0.73 (0.39, 1.38) 

Median Household Income(n=5402)    

Less than $37,877 185 1184 1 

$37,877-$66,172 185 1157 1.02 (0.82, 1.27) 

$66,172-$103,797 206 1102 1.19 (0.97, 1.48) 

More than $103,797 223 1160 1.23 (1.00, 1.52) 

Accessibility(n=7812)    

Distance to the Nearest Bus Stop (m)   

=< 200  1217 5784 1 

200 - 400  106 627 0.80 (0.65, 1.00) 

>= 400 12 102 0.56 (0.30, 1.05) 



  

Distance to the Nearest Subway Station (m)  

=< 200  223 1175 1 

200 - 400  470 2120 1.17 (0.98, 1.39) 

>= 400 642 3182 1.06 (0.93, 1.21) 

Distance to the Nearest Park (m)    

=< 200  725 3470 1 

200 - 400  417 2089 0.96 (0.84, 1.09) 

>= 400 193 918 1.00 (0.83, 1.21) 

Distance to the Nearest Bike Facility    

=< 200  925 4404  

200 - 400  189 974 0.92 (0.78, 1.10) 

>= 400 221 1099 0.96 (0.77, 1.18) 

Transportation(n=10360)    

Light Duty Vehicles VKT in 250 m buffer   

=< 1528 457 2133 1 

1528 – 7002 410 2180 0.88 (0.76, 1.02) 

7002 - 21035 459 2131 1.01 (0.87, 1.16) 

>= 21035 495 2095 1.10 (0.96, 1.27) 

Heavy Duty Vehicles VKT in 250 m 

buffer 

   

=<76 466 2124 1 

76-524.5 424 2166 0.89 (0.77, 1.03) 

524.5-2892.7 433 2157 0.91 (0.79, 1.06) 

>=2892.7 498 2092 1.08 (0.94, 1.25) 

Light Duty Vehicles VKT in 500 m 
buffer 

   

=< 14343 460 2131 1 

14343- 58607 408 2181 0.87 (0.75, 1.00) 

58607-193149 436 2154 0.94 (0.81, 1.08) 

>=193149 517 2073 1.16 (1.00, 1.33) 

Heavy Duty Vehicles VKT in 500 m 

buffer 

   

=< 700 469 2121 1 

700- 3722 416 2174 0.86 (0.75, 1.00) 

3722- 22998 424 2166 0.89 (0.77, 1.02) 

>=22998 512 2078 1.11 (0.97, 1.28) 

Air Pollution(n=10360)    

Average Daily PM2.5 Concentration (µg/m3) (Monitoring Stations)  
=<7.2 330 1540  

7.2- 7.5 450 2313 0.91 (0.78, 1.06) 

7.5- 8.8 526 2454 1.00 (0.86, 1.16) 

>=8.8 515 2232 1.07 (0.92, 1.25) 

Average Daily PM2.5 Concentration (µg/m3)   

=<8.59 472 2125 1 

8.59- 9.05 479 2106 1.02 (0.89, 1.18) 

9.05- 9.48 436 2154 0.91 (0.79, 1.05) 

>=9.48 434 2154 0.91 (0.79, 1.05) 

Average Daily NO2 Concentration (µg/m3)   

=<13.24 465 2148 1 

13.24 – 18.90 431 2136 0.93 (0.81, 1.08) 

18.90 -20.46 436 2154 0.93 (0.81, 1.07) 



  

>=20.46 434 2154 1.08 (0.94, 1.24) 

Land Use     

Ret FAR(n=7839)    

=<0.023 307 1653 1 

0.023-0.061 321 1638 1.06 (0.89, 1.25) 

0.061-0.128 332 1628 1.10 (0.93, 1.30) 

>=0.128 379 1581 1.29 (1.09, 1.52) 

# of Intersection in 500 m buffer(n=10360)   

=<1 369 1535 1 

1-6 510 2581 0.82 (0.71, 1.95) 

6-13 389 2093 0.77 (0.66, 0.91) 

>=13 553 2330 0.99 (0.85, 1.14) 

LUM(n=7839)    

=<0.486 317 1637 1 

0.486 – 0.596 320 1640 1.01 (0.85, 1.19) 

0.596 – 0.733 330 1640 1.04 (0.88, 1.23) 

>=0.733 372 1583 1.21 (1.03, 1.43) 

Crime (n=5402)    

Total Housing Violation per 1,000 Population   

=<0.1 212 1227 1 

0.1 -0.29 220 1113 1.14 (0.93, 1.40) 

0.29 – 0.61 202 1102 1.06 (0.86, 1.31) 

>=0.61 165 1161 0.82 (0.66, 1.02) 

Felony per 1,000 Population    

=<51 193 1111 1 

51-85 211 1140 1.07(0.86, 1.32) 

85-134 196 1173 0.96 (0.78, 1.19) 

>=134 199 1179 0.97 (0.78, 1.20) 

 

To control for the potential confounders effects, we then estimate the odds ratio adjusted for age, gender, ethnicity, 

smoking, and BMI. Table 2 shows that there are only two factors significantly affecting the risk of death in HF 

patients. Increasing number of intersections by 1 increases the risk of death in HF patients by 1.2%. Surprisingly, 

increasing the PM2.5 concentration is associated with lowering the risk of death in HR patients. It probably happens 

because not controlling for income, those who live in the core Manhattan are more likely to be wealthier and have 

lower risk of death. Comparing the built environment maps also reveal a dissimilarity between the pattern in PM2.5 

concentration versus the rest of the built environment measures. Higher Pm2.5 concentration in the Kings county 

is unique compared to the No2 concentration, traffic activities, LUM, intersection, and RetFAR.  

 

Table 3. Odds Ratio of Death in Heart Failure Patients Adjusted for Age, Gender, BMI, Smoking 

 Coefficient OR Pr (>|z|)d 

Built Environment Models Adjusted 

for SES 

   

Accessibilitya    

Distance to the Nearest Bus Stop -0.01955 0.994(0.987, 1.002) 0.125 

Distance to the Nearest Subway Station -0.00154 0.999(0.998, 1.001) 0.294 

Distance to the Nearest Park  -0.00311 0.999(0.995, 1.003) 0.674 

Distance to the Nearest Bike Path -0.00471 0.998(0.996, 1.001) 0.200 

Transportationb    

Light Duty Vehicles VKT (250m) 1.348 3.991(0.605, 26.34) 0.151 

Heavy Duty Vehicles VKT(250m) 5.223 185.49(0,4.5e08 ) 0.487 



  

Light Duty Vehicles VKT(500m) 0.183 1.201 (0.991, 1.454) 0.062 

Heavy Duty Vehicles VKT(500m) 1.265 3.543(0.780, 16.086) 0.101 

Land Use    

Ret Far 0.348 1.417(0.952, 2.109) 0.086 

LUMc 0.372 1.451(0.931, 2.263) 0.100 

Number of Intersections 0.012 1.012(1.003, 1.022) 0.007 

Air pollution    

NO2- LUR Model (ug/m3) -0.010 0.990 (0.978, 1.003) 0.127 

PM2.5- LUR Model (ug/m3) -0.108 0.897(0.829, 0.971) 0.007 

PM2.5- Monitoring (ug/m3) 0.0431 1.044 (0.965, 1.129) 0.283 
a Odds ratio associated with 100 meter change in accessibly, b Odds ratio associated with 1,000,000 VKT change 

in traffic activity, d P-values in bold are significant at 95%  

 

The third model calculates the odds of death in HF patients while adjusted for age, gender, smoking, BMI, income, 

ethnicity, and crime. The number of observations lowered to 5,204 so we could control for all the potential 

confounding factors. While the measures of accessibility still do not show a significant association with the 

outcomes, all traffic measures except for one are significantly associated with higher risk of death in HF patients. 

As the VKT of heavy-duty vehicles increase by 1,000,000 within the 500 meters buffer, the risk of death increases 

by 1350%. Number of intersections within the 500 meters buffer is the only land use measures that significantly 

increase the risk of death in HR patients. The NO2 estimated by land use models shows somewhat significant 

association with HR patients, the modeled PM2.5 is not significantly associated with higher risk of death.  

Table 4. Odds Ratio of Death in Heart Failure Patients Adjusted for Age, Gender, BMI, Smoking, 

Household Income, Education, Ethnicity, Neighborhood Crime 

 Coefficient OR Pr (>|z|) 

Built Environment Models Adjusted for 

SES 

   

Accessibility    

Distance to the Nearest Bus Stop -0.00177 0.995(0.987, 1.002) 0.173 

Distance to the Nearest Subway Station -0.00127 0.999(0.998, 1.001) 0.404 

Distance to the Nearest Park  -0.00299 0.999(0.995, 1.004) 0.697 

Distance to the Nearest Bike Path -0.00506 0.998(0.996, 1.001) 0.190 

Transportation    

Light Duty Vehicles VKT(250m) 2.267 9.650(1.267, 73.520) 0.029 

Heavy Duty Vehicles VKT(250m) 13.48 714972(0.025, 2 e13) 0.12 

Light Duty Vehicles VKT(500m) 0.305 1.356(1.098, 1.676) 0.005 

Heavy Duty Vehicles VKT(500m) 2.606 13.545(2.205, 83.192) 0.005 

Land Use    

Ret Far 0.386 1.472(0.928, 2.333) 0.100 

LUM 0.327 1.386(0.852, 2.256) 0.189 

Number of Intersections 0.014 1.013(1.003, 1.024) 0.009 

Air pollution    

NO2- LUR Model (ug/m3) 2.773 1.028(0.999, 1.058) 0.057 

PM2.5- LUR Model (ug/m3) -0.0236 0.977(0.837, 1.140) 0.765 

PM2.5- Monitoring (ug/m3) 0.128 1.136(1.122, 1.150) 0.018 

 



  

Discussion 

Urban, transportation, social and economic policies shape the built environment that besides the biological factors 

could affect public health. Built environment might play a crucial role in preventing NCDs. With of 68% of future 

population living in urban environment by 2050, it is important to frame future cities to be health protective. 

We find that exposure to traffic activity, ambient air pollution, and intersection density are significantly 

associated with higher risk of death in HF patients. While traffic activity and air pollution were believed to have 

negative heath impacts, number of intersections were previously assumed to have significant association on walking 

trips (Ewing and Cervero, 2010), and, therefore, be a positive influence on overall health condition. Our findings, 

however, explained that built environment factors may have controversial direct and indirect impacts on particular 

health outcomes such as death risk in HF patients. Furthermore, considering the positive, though not statistically 

significant at 0.05 level, impacts of compact development measures on increasing risk of death in HF patients have 

significant policy implications. Smart growth strategies including compact land use development are thought to 

promote active transportation and reduce vehicle dependency and therefore are good for public health. Recently 

there are controversial evidences that although compact land use development decreases the emission inventories 

but they might increase population exposure to vehicle emissions (Tayarani et al., 2016). Our findings provide 

further evidences on the unfavorable side of smart growth strategies in their current simple form. Continuing the 

smart growth strategies aiming at relieving congestion and curbing transportation emissions is ought to be mingled 

with new mobility vbuu8 systems such as vehicle electrification and ride sharing.  

Furthermore, the community level policies such as enhancing neighborhood walkability and increasing 

accessibility are synergetic with individual policies such as encouraging more physical activities and keeping health 

diet. The built environment policies are even believed to be more effective that individual factors in promoting 

public health (Ana V Diez Roux, 2003). For instance, providing bicycle facilities have been shown to increase bike 

mode share  (Rowangould Gregory M. and Tayarani Mohammad, 2016) and the lack of enough sidewalks affect 

the number of children walking to their school (Davison and Lawson, 2006). The existing policies, however, have 

changed the commuting pattern and walk mode share for commuting trips has declined to 2.7% in 2016 from 3.45% 

in 1989 (Bureau of Transportation Statistics, 2016) and active transportation mode share for children trip to school 

declined from 27.8% to 12.9% from 1969 to 2001 (McDonald, 2007).  

While the literature suggests providing access to active and public transportation might be effective to 

promote active lifestyle and reduce obesity, and therefore, could potentially improve public health, our findings 

suggest that they provided no significant help. These facilities might be helpful in reducing fuel use in transportation 

sector and reduce transportation externalities, they might not be a best place to spend funding money and expect 

direct impact on public health. It is important to notice that our findings obtained from large study area that include 

both urban and suburban areas, thus the promotion of public and active transportation and green space on public 

health should be followed more carefully. The findings once more highlight the need to integrate public health 

measures into urban policy planning. The more accurate comprehensive policy suggestions will enable policy 

makers to include cost benefit analysis in the long-range urban planning. In terms of technical issues, the findings 

from comparing the fully adjusted and semi adjusted models suggest that adjusting the models for potential 

confounders affect the results and may change both the direction and significance of the impacts. Furthermore, the 

findings suggest more causes using the built environmental factors act as a proxy for physical activity and correlate 

the findings to the health outcomes.  

Further research is needed to focus on finding health protective urban policy designs that improve public 

health. Our study could benefit from including more divers case studies, in terms of urban size and environment, so 

the findings would be more generalizable.  
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Study 3: Combining rich social determinants data with clinical data* 
 
Introduction 

Socioeconomic status (SES) and other social determinants of health (SDH) are predictors of population health and 

health inequality. Leveraging SDH data to improve care appears increasingly feasible with electronic health 

records (EHRs) and powerful machine learning capabilities. However, for healthcare organizations, collecting and 

updating patient income, literacy, social, and environmental factors might be prohibitively labor-intensive (and 

might not be welcomed by patients). As an alternative, it might be preferable to estimate SES and SDH from 

publicly available data.  

 

Somewhat surprisingly, studies that have done so have had mixed results. One study showed that “enriching” a 

model for 30-day readmission rates with community-level SDH variables improved predictive power,1 while 

others suggested that SDH made only small2 or no improvements.3,4  

 

We have argued that in relatively homogenous communities, SDH may not vary enough to make a difference in 

outcomes.5 New York City, NY, USA, is an ideal setting to explore the impact of SDH because it is extremely 

diverse, with a population about 44% white, 26% African-American, and 13% Asian. 29% of people of all races 

identify as Hispanic. Almost one-third of New Yorkers were born outside the US, and the city is also known for 

extremes of wealth and poverty. 

 

We have also suggested that SDH may produce poor results if estimated imprecisely.5 This may be a particular 

problem in dense urban areas such as New York (with more than 8.6 million people residing within 780 km2). 

Some previous studies have used the US ZIP (postal) code as the geographic unit, even though ZIP Codes have no 

standard population and range from thousands to more than 100,000 residents.  

 

Our objective was to construct a large data set that combined clinical data on a cohort of patients with a rich set of 

localized address-based SDH. This data set will be available for multiple analyses of the impact of SDH on health 

outcomes. 

 

Methods 

Electronic health record data was from NewYork-Presbyterian Hospital-Weill Cornell Medical Center (NYP-

WCMC). Weill Cornell’s research informatics department maintains NYP data in the Observational Medical 

Outcomes Partnership (OMOP) Common Data Model for research. Patient addresses were mapped to two US 

Census Bureau units, the census tract (a standard unit with a mean of 4000 people) and the census block (which 

contains less than 1000). We aggregated public data from (1) the US Census decennial census, (2) the American 

Community Survey, a smaller annual survey by the Census Bureau, (3) the US Environmental Protection 

Agency’s National Air Toxics Assessment, and (4) New York City Open, collections of data sets released by city 

agencies. 

 

Results  

For demonstration purposes, we created a data set to replicate a score that has been demonstrated to predict 30-

day readmissions in European clinical data,6 and then determine the effect of adding SDH. Following 

methodology from Aubert et al., we selected medical discharges 2015-2017, excluding patients who lived outside 

NYC, died in hospital, were transferred, or left against medical advice. The data set contains about 4500 

discharges, of whom about 650 were readmitted within 30 days.  

By mapping patient addresses to geographic regions, we generated an SDH data set for these patients that 

includes 20 variables mapped to both census track and census block. These represent economic variables (the 

CDC’s social vulnerability index, median income), neighborhood and built environment (crime rate, access to 

health food, air quality, tree cover, and access to public transportation), and other social and community (percent 

foreign born). Through public lists, patient addresses can be used to determine whether the patient lives in public 



housing or a retirement community. This data can also be joined with SDH elements available in the EHR 

including race and ethnicity, marital status, and primary preferred language.  

Conclusions 

By geocoding patient addresses and doing extensive research on publicly available data from multiple sources, it 

is possible to create research data sets that combine clinical data with rich social determinants data. Currently 

ongoing analyses will extend previous research on the contribution of SDH to predictive models by assessing its 

impact in a dense, diverse urban setting using high-granularity geographic mapping. 
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Appendix 

This database contains patient encounter information extracted from the EHR at 53 sites of Weill Cornell 

Medicine and 2 campuses of NewYork-Presbyterian Hospital. It contains over 1,566,917 patients from 2012 to 

2018. Number of unique clinical class and drug class are 1814 and 486, respectively. Data are updated every 3 

months to provide new encounter information in the database. The database is stored in a Microsoft SQL server 

securely managed by Weill Cornell Medicine’s Information Technology Services. Table A1 lists the encouter 

frequencies. Table A2 shows the patient breakdown by states.  Tables A3, A4, and A5 list the descriptive 

statatistics for demographics, common conditions, and common drug classes.  

Table A1. Encounter statistics 

Encounter Number 

Emergency Room and Inpatient Visit 165,139 

Emergency Room Visit      688,776 

Inpatient Visit      236,558 

Outpatient Visit 49,969,687 

Table A2. Number of patients by state 

State Count 

NY 599655 

NJ 24023 

CT 3324 

PA 1527 

FL 18 

CA 10 

 Table A3. Demographic information in the databases(N=1566917). All variables (apart from mean) are 

represented as counts (percentages).  

Age (mean) 48.9 

Age group, years 0-19 24,411 (1.6) 

20-39 547,814 (35.0) 

40-59 523,234 (33.4) 

60-79 391,050 (25.0) 

80+ 80,408 (5.1) 

Gender Female 913,088 (58.3) 

Male 653,598 (41.7) 

Unknown 230 (0.01) 

Race Asian 121,048(9.1) 

Black or African American 118,425(8.9) 

White 455,330(34.2) 



Multiple Race 210,304(15.8) 

Others 6,955(0.5) 

Unknown 419,843(31.5) 

Table A4. Most common diseases 

Diagnose ICD 10 CM 

code 

Count 

Essential (primary) hypertension I10 73085 

Disorders of lipoprotein metabolism and other lipidemias E78 67651 

Abdominal and pelvic pain R10 44704 

Other joint disorder, not elsewhere classified M25 33844 

Type 2 diabetes mellitus E11 30449 

Dorsalgia M54 29853 

Pain in throat and chest R07 28875 

Malaise and fatigue R53 28284 

Other and unspecified soft tissue disorders, not elsewhere classified M79 25387 

Abnormalities of breathing R06 24766 

Long term (current) drug therapy Z79 23360 

Table A5. Most common drug classes (VA class) 

Drug class Count 

CENTRAL NERVOUS SYSTEM MEDICATIONS 418447 

HORMONES/SYNTHETICS/MODIFIERS 340340 

ANTIMICROBIALS 321555 

GASTROINTESTINAL MEDICATIONS 310652 

CARDIOVASCULAR MEDICATIONS 310046 

ANALGESICS 275354 

DERMATOLOGICAL AGENTS 265955 

MUSCULOSKELETAL MEDICATIONS 264233 

RESPIRATORY TRACT MEDICATIONS 244489 

VITAMINS 240218 

ANTIRHEUMATICS 221083 



OPIOID ANALGESICS 216895 

NONSALICYLATE NSAIs,ANTIRHEUMATIC 201298 

GASTRIC MEDICATIONS,OTHER 186168 

LAXATIVES 181991 

THERAPEUTIC NUTRIENTS/MINERALS/ELECTROLYTES 172122 

ELECTROLYTES/MINERALS 169384 

ANTILIPEMIC AGENTS 167660 

NON-OPIOID ANALGESICS 165715 

NASAL AND THROAT AGENTS,TOPICAL 163292 
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