SYSEN 5300 Final Project: Electrifying Cornell Fleet

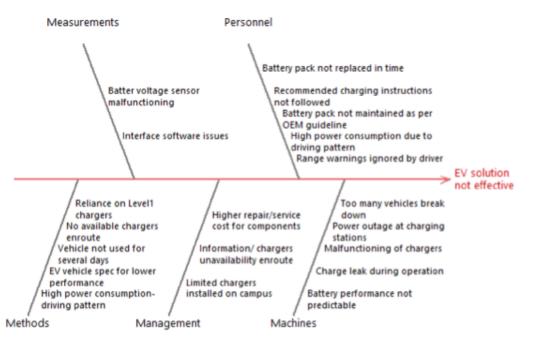
Nilesh Deshpande, Ye Lin Kim, JD Paff, Daniel Sachs

Cornell's Goal: Carbon Neutral by 2035

Project Objectives:

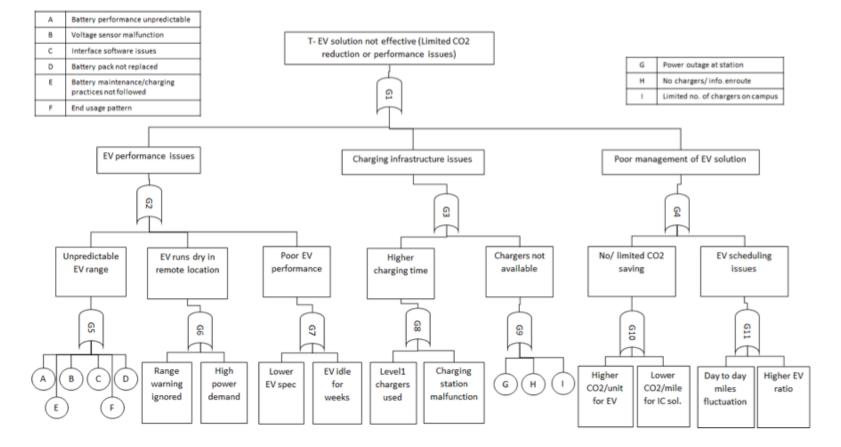
- Evaluate the cost effectiveness of transitioning Cornell's fleet to EV
- Identify potential obstacles/risks associated with adopting EV solution
- Model fleet utilization in order to project future usage
- \circ Determine optimized EV solution
- Propose next steps

System FMEA Summary


- FMEA document created for top failure modes of the system (vehicle, charging infrastructure failure and overall system)
- Mitigation plan proposed for top 7 risk items
- Top 3 risks highlighted in table below with mitigation plan

ltem / Function	Potential Failure Mode	Potential Effect(s) of Failure	S e V	Potential Cause(s) / Mechanism(s) of Failure	О с с ц г	Current Design Controls	D e t c t	RPN	Recommended Action(s)	Responsibility & Target Completion Date
EV/PHEV- Vehicles	Electric range unpredict able	Range anxiety for driver	5	Recommended charging instructions not followed	2	- OEM recommended charging instructions	4	40	 Create SOP for users for charging practices 	Cornell, Transport Dept Post solution recommendation
			5	High power drawn by motor due to driving pattern	3	 Vehicle warning signs showing non optimal use 	4		 Monitor vehicle usage pattern on select vehicle during a pilot run before finalizing solution 	Cornell, Transport Dept Post solution recommendation
	EV runs dry in remote location	User inconvenience	5	Range warnings ignored by driver	4	 Vehicle warning signs showing heavy power usage 	4	80	 Ensure range warning signs are notice- able (hooters, blinkers) Connect vehicles to central servers for remote gatering and monitor data 	Cornell, Transport Dept Post solution recommendation

Fishbone Summary


- Fishbone diagram laid out for categorizing identified risks into various sources
- Top failure modes are linked to-
 - Man- usage pattern, maintenance practices, ignoring range warnings
 - Machine- vehicle/chargers breakdown, power cuts, interface software
 - Method- type of chargers used, EV vehicle selection, enroute chargers availability

Fishbone- Overall system failure

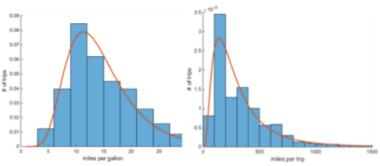
Fault Tree

- FTA framework created to provide an estimate of overall system reliability
- Limited data on individual failure mode probabilities → Reference for future work when EV technology matures for accurate estimation of failure probabilities

Current EV Options

Data Provided + Method

RAW DATA from CTECH and Cornell Transportation and Mail Services:


- Fuelmaster transactions: Transaction information classified by Vehicle ID
- Asset Data: Vehicle ID, Model, Make •

Sort raw data into the different vehicle types to determine: FLEET SIZE, TRIPS PER YEAR, TRIP LENGTH (MPT), FUEL ECONOMY (MPG)

Plot histograms of MPT and MPG

Fit best probability distribution, find parameters, average, and standard deviation:

HISTOGRAM AND DISTRIBUTION FOR CAR

	Count	Trips per Year	Distribution							
Vehicle Type	Count		MPT	E, SD	Parameters	MPG	E, SD	Parameters		
Car	80	1973	Lognormal	E: 323.53	Mu: 5.52	Lognormal	E: 14.5	Mu: 2.59		
Car				SD: 240.25	Sigma: 0.75	Lognormal	SD: 5.7	Sigma: 0.41		
Minivan	138	3235	Lognormal	E: 208.09	Mu: 5.03	Weibull	E: 10.14	A: 11.33		
winivan				SD: 201.06	Sigma: 0.76	vveibuli	SD: 3.55	B: 3.06		
Van	93	1781	Lognormal	E: 165.63	Mu: 4.94	Normal	E: 7.79	Mu: 7.79		
Vall				SD: 103.52	Sigma: 0.67	Normai	SD: 3.35	Sigma: 3.35		
SUV	31	1868	Lognormal	E: 93.42	Mu: 4.28	Lognormal	E: 7.13	Mu: 1.89		
307				SD: 96.85	Sigma: 0.68	Lognormal	SD: 2.76	Sigma: 0.38		
Diekue	127	2736	Gamma	E: 218.39	a: 2.05	Gamma	E: 8.00	A: 3.53		
Pickup				SD: 180.46	b: 106.51	Gamma	SD: 4.33	B: 2.27		

Weibull

a: scale parameter b: shape parameter

Gamma

a: shape parameter b: scale parameter

(electric range, battery, MPG, Cost) EV Options

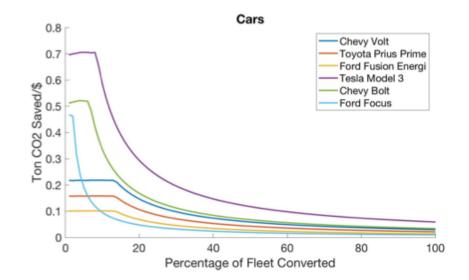
MODEL INPUTS

+

Model Algorithm

- Goal Calculate the cost/ton CO2 saved
- 1. Simulate Current distributions for 10 years
 - Miles per trip & Miles per gallon
- 2. Calculate the gas we will save & electricity use
 - Separately for each vehicle
 - For different percentage of the fleet being converted
 - Assuming a vehicle can take only 1 trip every other day max
 - Different algorithms for Battery Electric and Plug in Hybrids vehicles

Battery electric vehicle	Plug in hybrid vehicle			
IF Miles per trip < Range	IF Miles per trip < Range			
Find Electricity needed Find Gas that would of been used (Miles per trip/Miles per gallon)	Find Electricity needed Find Gas that would of been used (Miles per trip/Miles per gallon)	 3. Calculate the cost/ton CO2 saved Cost to upgraded fleet The CO2 production eliminated Plotted the data based on 		
	IF Miles per trip > Range	percentages		
	Find Electricity needed to go the range Find Gas that would of been used to go the range (Range/Miles per gallon)			


Results & Recommendations

Results

- Curves for \$/Ton C02 Saved were made for each vehicle
 - This plot shows Tesla Model 3 is the ideal
- Different plots for different category of vehicles
- Comparison of vehicle quality

Recommendations

- Use the curves generated to compare electrifying the fleet to other green projects
- Optimization with the rest of cornell is required
- Use one charger per vehicle to maximize the savings

Note: Linearity is caused by the constant utilization assumption

Future Scope of Work

- Update vehicle utilization via research/modeling
 - We assumed 50% utilization
- Optimize number of charging stations
 - We assumed 1 charging station per vehicle
- Determine locations for charging stations
 - We envision charging stations to be in parking lots where EVs will be stored overnight
- Constrain model with additional information
 - Expected time frame for simulation, budget constraints, and others
- Continue to monitor EV industry to make updates for EV selection