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Emerging automated vehicles (AV) may be able to provide advanced information about the 

surrounding information with video cameras, radar sensors, lidar sensors, etc. Such information 

will enable estimating and predicting transportation system states on mobility, energy, and 

emissions. In this study, a physical informed neural network is developed to perform an accurate 

tire-road friction estimation by utilizing those advanced vehicle sensors. A runway friction tester 

is employed as the ground truth. More than 15,000 GPS date points and other vehicle dynamic 

data points are collected during the field experiment, As a result, short convergence time and 

desired prediction accuracy are achieved by introducing the magic tire model and the slip-slop 

factor into the loss function. 

Abstract 



Vehicle technologies have undergone drastic improvements in recent years, in particular on 

sensing technologies that report a variety of vehicle and environment conditions and control 

technologies that automate vehicle driving. For example, many existing production vehicles are 

furnished with sensors that can record vehicles' operational states, including speed, fuel 

consumption, steering angle, and each individual tire speed. Further, recently emerging 

automated vehicles (AV) may be able to provide advanced information about the surrounding 

information with video cameras, radar sensors, lidar sensors, etc. On the other hand, connected 

vehicle (CV) technology that enables communications between vehicles and roadside 

infrastructure provides the communication platform to integrate sensor information from 

multiple vehicles or even a traffic stream. Such information will enable estimating and predicting 

transportation system states on mobility, energy, and emissions. Further, it will help better 

control AVs to smooth traffic and reduce system energy consumption and emissions, thereby 

improving the environment and community health.  

To date, a series of studies have investigated this possibility [1], [2]. Qu et al. [3] developed a 

car-following model for electric and connected AVs based on reinforcement learning to dampen 

traffic oscillations and reduce fuel consumption. Yao et al. [4] proposed a trajectory smoothing 

method for connected AVs. In their study, with real-time traffic demand and signal timing 

information, connected AVs are optimized to run smoothly without any full stop and thus reduce 

fuel consumption. Li et al. [5] studied a periodic switching control method for an AV platoon to 

minimize the overall fuel consumption. Wadud et al. [6] explored the net effects of AVs on fuel 

consumption and greenhouse emissions. They found that AVs might plausibly reduce road 

transport greenhouse gas emissions and energy use by nearly half in some scenarios. This project 

will set up a framework for utilizing vehicle-based sensing information to assist AV driving and 

traffic control, aiming to bring in mobility and environmental benefits.  

For the safe operation of the vehicle on the road, active and passive vehicle stability control 

system, such as Traction Control System (TCS) and Anti-lock Braking System (ABS) has been 

widely employed by various manufacturers. Those systems rely greatly on the accurate 

estimation of the tire-road friction factor. However, considering the cost and difficulty in 

measuring the tire-road friction factor directly, meanwhile, the traditional vehicle sensors cannot 

provide required data at the desired accuracy. By utilizing the advanced vehicle sensors on AVs, 

such as video cameras, lidar sensors, GPS sensors, an Inertia Measurement Unit (IMU), we can 

get the vehicle and tire dynamic in real-time, such as tire normal load, tire slip ratio, and slip 

angle, thus the performance of the active/ passive vehicle safety system can be significantly 

improved. 

Existing studies can be divided into two categories, such as experiment-based study, and model-

based study[7]. The experiment-based study seeks to build a correlation between the sensor data 

and the tire-road friction[8], [9], [10]. The model-based method estimates the friction by 

mathematical models [11], [12], [13]. However, these methods cannot provide satisfying results. 

The experiment-based method is not repeatable when the experiment condition changes 

dramatically, and the model-based method will draw different slip-slop curves when tire 

condition (e.g., tire pressure, and tire wear) changes. Thus, we bring up a state-of-the-art physical 

informed neural network-based method to estimate the tire-road friction. Our method 
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incorporates the accuracy of the physically informed neural network and the simplicity of the 

slip-based tire model to perform a quick and accurate tire-road friction estimation.  

The rest of the report is organized as follows. Section 2 explains the formation of the physical 

informed neural network models. Section 3 describes the hardware implementation details. 

Section 4 presents the experiment settings and data collections. Section 5 analysis the results. 

Section 6 concludes this report.  

To give the reader an overview of the process of the Tire-road friction estimation, Figure 1 

shows the structure of the estimation model. Then each part will be described in detail in the 

following materials. 

 
Figure 1 Model structure 

Physical informed neural network 

The idea of the physical informed neural network is to introduce the known differential equations 

into the loss function when training the neural network. This is done by sampling a set of input 

training data ({𝑥𝑗}) and passing them through the network. Next gradients of the network’s 

output with respect to its input are computed at these data points (which are typically analytically 

available for most neural networks and can be easily computed using auto-differentiation). 

Finally, the residual of the underlying differential equation is computed using these gradients and 

added as an extra term in the loss function. As shown in Figure 2. 

 
Figure 2 Scheme of physical informed neural network 

The loss function of the physical informed neural network can be represented as the following 

equation: 

Methodology 
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As you can see in the equation, the physical loss term will try to ensure that the solution learned 

by the network is consistent with the know physics. The physical informed neural network can 

predict the solution far away from the experimental data point, and thus performs better than the 

naïve network. On the other hand, the naive network is performing poorly because it omits some 

knowing scientific facts and only refers to the data at hand.  

Motivated by this idea we developed a physical informed neural network model to perform fast 

and accurate tire-road friction factor prediction. Magic tire model and vehicle dynamics are 

considered in the model. 

Tire model 

Magical Formula (MF) is a tire formula widely used by the automotive industry which is 

essential to the design of the vehicle stability control system. Even the racing department will use 

this magic formula to design their torque control algorithm. It was named the “magic” because 

there is no physical basis for the formula structure, but it fits a wide variety of tire construction 

and operation condition. It builds a relationship between slip ratio and horizontal force. The 

general form of MF, given by Pacejka [14] is: 

𝑦 = 𝐷 ∗ sin⁡{𝐶 ∗ arctan⁡[𝐵𝑥 − 𝐸 ∗ (𝐵𝑥 − arctan⁡(𝐵𝑥))]} 

Where B, C, D, and E represent fitting constant which depends on chassis setting and tire feature. 

y is a force or moment resulting from a slip ratio x.  

Figure 3 gives an example of a magic formula curve. Slip angle is the angle between a rolling 

wheel's actual direction of travel and the direction towards which it is pointing. When a vehicle 

runs in a straight lane, the slip angle can be assumed zero. 

 
Figure 3 Example magic formula curve 

Slip-ration based model 



As Figure 4 shows, the 
𝐹𝑥

𝐹𝑧
  is an increasing function of slip ratio until a critical value where 

𝐹𝑥

𝐹𝑧
 

equal to fraction factor μ, and then starts decreasing slowly. In most of our daily driving 

activities, particularly, for our purpose, the slip ratio is always in the increasing area. In this 

region, the relationship between slip and 
𝐹𝑥

𝐹𝑧
 can be seen as linear. Thus, we have 

𝐹𝑥
𝐹𝑧

= 𝐾𝜎𝑥 

Where 𝜎𝑥 is slip ratio, K is called slip-slope. According to Rajamani’s [11] research, K varies as 

road friction coefficient changes. A linear relationship was built and calibrated with experimental 

data.  

 
Figure 4 The Slip and Normalized longitudinal force 

Vehicle dynamics 

1. The definition of slip ratio: 

𝜎𝑥 =
𝑟𝑒𝑓𝑓𝑤𝑤 − 𝑉𝑥

𝑉𝑥
,⁡⁡⁡𝑎 < 0 

𝜎𝑥 =
𝑉𝑥 − 𝑟𝑒𝑓𝑓𝑤𝑤

𝑉𝑥
,⁡⁡⁡𝑎 ≥ 0 

Where,  

𝑟𝑒𝑓𝑓 is the effective radius of the tire 

𝑤𝑤 is wheel speed 

𝑉𝑥 is vehicle speed 

The technical difficulty in this part is how to get the real vehicle speed. The most used method 

for not full-wheel drive vehicles is using the driven wheel to get the real vehicle speed, e.g., for a 

front-wheel-drive vehicle, the average wheel speed between two rear tires can be used as the real 

vehicle speed. Another available option is using Gyro and high-definition GPS to obtain the real 

vehicle speed. Based on our observation, at low speed, the GPS data is more accurate than the 

driven wheel data, and at high speed, the driven wheel data is more accurate. One possible 

reason is that most auto manufacturers use Hall sensors to get the wheel speed data which is not 

accurate when the speed is low. On the other hand, it is the natural characteristic for GPS data 



that the accuracy will decrease with vehicle speed increases, because for a determined GPS 

sample rate, when the vehicle speed increases, the GPS data point is getting sparse, and thus 

have worse accuracy. In our experiment, both methods are employed. Determined by the driven 

wheel speed, when it is less than or equal to 25 mph, we will use GPS data to calculate the real 

vehicle speed, when it is greater than 25 mph, we will use driven wheel speed as the real vehicle 

speed.  

2. Normal force calculation 

During operation, since the vehicle will have acceleration and deceleration, the normal force of 

each tire usually is not a constant. Figure 5 shows the vehicle longitudinal dynamic.  

 
Figure 5 Longitudinal vehicle dynamic 

If the vehicle is traveling in a straight line without gradient, the normal force of each tire can be 

calculated using the following equations: 

𝐹𝑧𝑓 =
𝑚𝑔𝐿𝑟 −𝑚𝑥̈ℎ − 𝐶𝑎𝑥̇

2ℎ𝑎
𝐿

 

𝐹𝑧𝑟 =
𝑚𝑔𝐿𝑓 +𝑚𝑥̈ℎ + 𝐶𝑎𝑥̇

2ℎ𝑎

𝐿
 

Where, 

𝐹𝑧𝑟 and 𝐹𝑧𝑓 is the normal force of the rear axle and front axle 

𝑚 is vehicle mass 

𝐿 is wheelbase 

𝐿𝑟 and 𝐿𝑓 are rear wheel and front wheel’s distance to the center of mass  

𝐶𝑎 is aerodynamic drag parameter 

ℎ𝑎 is the height of equivalence point of aerodynamic drag 

ℎ is the height of the center of mass 

Assume the weight of the left and right sides are evenly distributed, then the normal load for 

each tire can be obtained.  

3. Longitudinal force calculation 

For each wheel, the rotation dynamic is given by  

𝐼𝑤𝑤𝑤 =̇ 𝑇𝑑 − 𝑇𝑏 − 𝑟𝑒𝑓𝑓(𝐹𝑥 − 𝑅𝑥) 

Where, 



𝐼𝑤 is the moment of inertia of each tire 

𝑇𝑑 and 𝑇𝑏 is drive and brake torque for each tire. Usually, 𝑇𝑑 can be obtained from ECU. 𝑇𝑏 will 

need to be calibrated for each vehicle.  

𝑅𝑥 is rolling resistance 

This section introduces the implementation details of the data collection AV and  

This section introduces the implementation details of the AV testbed and advanced vehicle 

sensors. 

The USF L3 automated and connected vehicle is the major equipment we have in this project. It 

is equipped with advanced vehicle sensors; Figure 7 shows the list of those sensors. Note that the 

OBD II scanner is used to read and storage the wheel speed data and engine torque, the PCan 

system is used to send the corresponding data inquisition to the ECU. Real-time GPS positions 

and speeds of the experiment vehicles were collected at a sampling rate of up to 10Hz by a high-

accuracy NovAtel navigation unit with antennas affixed to the rear bumpers of the vehicles. 

Preliminary tests indicated that the GPS receivers had a position accuracy of 0.26 m and a speed-

accuracy of 0.089 m/s. The NovAtel navigation unit also integrates an Inertia Measurement Unit 

(IMU) which can provide the angular velocity and angular acceleration (yaw, pitch, and roll rate) 

of the vehicle.  

 
Figure 6 USF L3 AV testbed 

 
Figure 7 Advanced vehicle sensors 

To validate our algorithm, we need equipment that can provide the ground truth of road friction 

value, and thus we configured the USF runway Friction tester, as shown in Figure 8.  

Hardware Implementation 

                  
                   



 
Figure 8 USF runway friction tester 

As shown in Figure 9, the experiments were conducted at the segment of Florida State Rd 56 

between Bruce B Downs Blvd and Gall Blvd. The length of the experiment site is around 10 

miles. The building density around the road is relatively low and thus the GPS receivers have 

good communication with satellites. The road pavement of the road is cement concrete 

pavement, and the weather is sunny when we collect the data. 

 
Figure 9 Experiment site illustration 

During the experiment, both the USF runway friction tester and USF L3 AV testbed will drive 

through the test site. To prevent any influence from whether, e.g., rain, wind, these two cars will 

operate simultaneously, i.e., one car follows another one. When the USF runway friction tester 

work, it will spray water to the pavement to prevent the rubber tire from getting burned, which is 

used to collect the road friction factor. Considering this fact, this friction tester needs to follow 

the USF L3 AV testbed to collect data. 

To study the influence of vehicle speed as well as the vehicle dynamic on the accuracy of 

prediction, we collected data on different speed ranges with speed changes during the 

experiment. For illustration purposes, the five-speed profiles are shown in Table 1. It is observed 

that each speed profile is composed of three periods. In the first period (0s-30s), the lead vehicle 

cruised with an initial speed (varying from 15 mph to 35 mph, which is the speed limit of the 

Road friction tester during data collection). In the second period (30s-60s), the lead vehicle 

decreased its speed to a target speed (vary from 10 mph to 30 mph) and remained the target 

speed till the end of this period. In the third period (60s-90s), the lead vehicle increased its speed 

to the initial speed and maintained the initial speed till the end of the third period, which 

indicates the accomplishment of one test. In each profile, the leading vehicle speed will decrease 

Field experiment settings 



by 5 mph. The following vehicle, i.e., the road friction tester, will be driven by an experienced 

driver and always maintain a safe distance from the proceeding vehicle. 
Table 1 Speed profile of the experiment vehicles 

Speed Profile 0s-30s 30s-60s 60s-90s 

1 35 mph 30 mph 35 mph 

2 30 mph 25 mph 30 mph 

3 25 mph 20 mph 25 mph 

4 20 mph 15 mph 20 mph 

5 15 mph 10 mph 15 mph 

More than 15,000 data points are collected for different speed ranges during the experiment. 

Figure 10 gives an example of the prediction result on one of the driving wheels for speed profile 

1. As described in the figure, a lot of outliers are observed in the data. There are two possible 

reasons. One possible reason could be the accumulated spin error of IMU, which will lead to an 

abnormal normal force for individual tires, and thus lead to a higher slip-slop K, then higher road 

friction factor. Another possibility is the sampling error of the Hall wheel speed sensor, to 

address this issue and get a more accurate prediction, a grating displacement sensor or ultrasonic 

position sensor is needed to be integrated. Let alone those outliers, most of the maximum friction 

factor along the time axes is located between 0.1 and 0.6 with a mean at 0.38. Referring to [15], 

this range is reasonable for a cement concrete pavement road on sunny days. 

 
Figure 10 Example prediction result of speed profile 1 

One may notice the maximum friction factor remains constant between 800 and 900 data points. 

The reason for this phenomenon is that the data collection is performed on the public road, and 

there are few signalized intersections in the test site. During this specific period, the road friction 

tester and the USF L3 AV testbed are stopped, and thus the output of slip ratio, as well as the 

vehicle speed, is zero, then the model will output a constant 0.05, which is served as a correction 

term in the model.  

Result Analysis 



This project investigated the possibility of using a vehicular sensor to detect the tire-road friction 

factor which is critical to the design and tunning of the active and passive vehicle stability 

controls. During this project, we have reviewed the previous work in tire-road friction factor 

detections and categorized them into model-based method and experiment-based method. Both 

methods have it pros and cons, and most of them cannot provide an accurate prediction when the 

environmental conditions change dramatically. To address this gap, a physical informed neural 

network based model was developed to predict the tire-road friction factor. This model absorber 

both advantage of the experiment-based method and model-based method, it is aware of the 

characteristics of tires and meanwhile can take advantage of massive experiment data. This 

model was applied to the USF L3 AV testbed equipped with advanced vehicle sensors to collect 

and validate our algorithms. The USF runway friction tester was employed as ground truth to 

provide ‘real’ road friction factors. During the experiment, we found that the physical informed 

neural network model can be applied to various speed ranges and can get desirable prediction 

results, which show its reliability in different speed conditions. However, due to the limitation of 

the test site and the uncertainty of the weather condition during the environment, we didn’t 

collect data in wet pavement conditions. So, it is unknown to us whether the performance of the 

model will stay consistent in rainy conditions. Additionally, with physical facts involved in the 

loss function of network training, the convergence can be reached at a short time compared to a 

naive network. Meanwhile, outliers are observed in the output. Two possible reasons are 

identified. One possible reason could be the accumulated spin error of IMU, which will lead to 

an abnormal normal force for individual tires, and thus lead to a higher slip-slop K, then higher 

road friction factor. Another possibility is the sampling error of the Hall wheel speed sensor. 

Thus, we can further expand the work of this project by adding more accurate sensors and 

performing the experiment in different pavement conditions, e.g., wet pavement, and different 

pavement types, e.g., hot mix asphalt, stone mastic asphalt, composite.  

Conclusion 
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