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Abstract 

Well-informed mobility-aware decision-making in spatial planning and urban design practice is imperative to reducing 

vehicle miles traveled (VMT) and advocating sustainable transportation modes. However, integrating transportation 

consideration into the early-stage design process remains challenging due to the lack of tools to inform designers about 

the mobility implications of their scenarios. This paper proposes a data-driven framework that utilizes open data 

sources including the travel survey data, census data, and POI data for modeling and simulating the spatiotemporal 

mode-distance choice distribution of urban home-based trips (i.e., trips originating from home). The framework has 

four main steps including (1) Population clustering, (2) Travel choice modeling, (3) Trip generation and simulation, 

and (4) Analysis. This framework, for the first time, allows urban designers and planners to efficiently quantify the 

amount of mode shift that can be elicited and the total VMT that can be reduced by different design scenarios. This 

methodology is generalizable and expandable due to its data-driven nature, which makes it a practically applicable 

tool to tackle varying design questions and be adapted to different geographical contexts. Through a proof-of-concept 

case study in California, we provide evidence that the dense and mixed-use urban development can significantly 

reduce VMT, advocate active transportation, and increase public transit ridership. 

Keywords: mobility, simulation, urban planning, urban design 

Introduction 

By 2050, the global urban population is projected to grow by 2.5 billion, and roughly two-thirds of the world's 

population will live in urban areas (United Nations, Department of Economic and Social Affairs, and Population 

Division, 2018). This indicates a massive construction volume for new urban habitats and the continuous densification 

of current cities in the coming thirty years. Hence, urban mobility systems are at a crossroads where problems like 

congestion and pollution could be further aggravated with the rapid urbanization. The widely recognized objectives 

for future planning include reducing travel distances in cities and increasing accessibility to more sustainable urban 

transport solutions (UN-Habitat, 2013; Wegener et al., 2017; Rupprecht Consult, 2019; Ceder, 2020). Many 

municipalities have started seeking integrative and holistic planning strategies to mitigate congestions, protect the 

environment, and enhance the quality of life. For example, California Transportation Plan (CTP) 2050 envisions 

reducing total vehicle miles traveled (VMT) by up to 27 percent and supporting a shift from 13 percent to 23 percent 

of all trips occurring by non-auto modes such as walking, biking, and public transit (Caltrans, 2021). Once achieved, 

it can significantly reduce the local transportation sector's greenhouse gas (GHG) emissions and enable vibrant, 

healthy communities. Moreover, based on new evidence from mobility research in the COVID-19 pandemic, shorter 

commute distances and more accessible active mobility choices can benefit urban resilience during the public health 

emergency response (Yang et al., 2021). 

Well-informed mobility-aware decision-making in spatial planning and urban design practice is imperative to reducing 

VMT and advocating sustainable transportation modes. Built environment factors, such as zoning regulations, 

placement of urban services, and density allocation, have fundamental impacts on human travel behavior (Stead and 



      

 

  

   

   

    

  

 

   

 

    

 

   

 

 

    

   

     

 

   

   

    

   

   

    

    

    

  

 

  

    

 

    

  

 

Marshall, 2001; Grazi, van den Bergh and van Ommeren, 2008). Although these factors are found to have modest 

individual impacts, typically just a few percent of total travel, they are synergistic and therefore have a significant 

combined effect on transportation (Ewing and Cervero, 2010; Litman, 2021). Urban infrastructure and spatial patterns 

are much more costly to change once established than policies like parking pricing or gasoline taxing. This makes 

spatial planning and urban design approaches widely regarded as stable, long-term, and cost-effective ways to alleviate 

transportation congestion and emission (Yigitcanlar and Kamruzzaman, 2014; Ma et al., 2018). 

Despite the urgent need, integrating transportation consideration into the spatial planning and urban design process 

remains challenging due to the lack of tools to quantify the mobility implications of design scenarios. More 

specifically, there is currently no straightforward way to directly inform designers about the amount of mode shift that 

can be elicited and the total VMT that can be reduced by implementing their design ideas. State-of-the-art approaches 

in transportation and land use planning (Sadek et al., 2011; Wegener, 2021), including activity-based model, modified 

four-step model, and integrated transport-land use models such as TRANUS, ILUTE, are not suitable for the early-

stage design scenario testing because they try to model the equilibrium within the entire urban system and require 

detailed inputs such as road capacity, street hierarchy, building occupancy, speed limits, and travel costs. However, 

designers often do not have access to this detailed information, and collecting data or making assumptions for all of 

these inputs is challenging and unfeasible in the design phase. Also, calibrating and implementing these highly-

specialized models is complex, demanding, and expensive. These limitations motivate research to develop simplified 

and targeted models for evaluating spatial planning and design strategies (Litman, 2021). In this regard, one type of 

more simplified and widely adopted framework in planning and design applications is indicator-based models. They 

use a group of engineered variables or composite scores to estimate, mostly with regressions, a certain dependent 

variable such as the percentage of one travel mode or the VMT (Moudon and Stewart, 2013; Lee, Jeong and Kim, 

2016; Berhie and Haq, 2017). Common indicators include Space Syntax (Hillier et al., 1976) and several D's (Cervero 

and Kockelman, 1997; Ewing and Cervero, 2010). However, there are debates around these conventional methods 

regarding their relatively low sensitivity to design and planning impacts, the influence of the analysis scale, and the 

lack of behavioral interpretability (Sadek et al., 2011; Handy, 2018; Pafka, Dovey and Aschwanden, 2020). 

Recent development in design-sensitive travel demand forecasting frameworks has two emergent trends. The first 

trend is accessibility-based, disaggregate-level simulation frameworks. They use address-level accessibility measures 

based on Points of Interest (POI) data to model trip-level choices and then aggregate them to reveal spatiotemporal 

patterns (Kou et al., 2020; Sevtsuk, Basu and Chancey, 2021). The second trend is learning-based frameworks. They 

leverage machine learning techniques to simplify processes like data collection and travel behavior prediction 

(Aschwanden et al., 2021). However, to our knowledge, there is no framework to date that can predict spatiotemporal 

patterns of multi-modal split and VMT simultaneously for any type of urban trip at fine spatial resolution. There are 

a few references in the choice modeling literature who studied the joint choice of travel mode and travel distance 

(Vega and Reynolds-Feighan, 2009; Ding et al., 2014), but they were exclusively used for assessing policies like 

increasing car travel costs while minimal research efforts have been exerted to frame this joint choice question in 

spatial planning and urban design applications. 



 

   

   

 

  

  

   

   

  

         

  

   

    

  

  

  

  

 

   

 

 

 

   

   

  

    

 

  

This paper proposes a data-driven framework that utilizes learning-based models to simulate the mode-distance choice 

distribution of urban home-based trips (i.e., trips originating from home). The output trips can be aggregated to derive 

accumulative modal split or VMT by high-resolution geographical units such as Census Block Group (CBG). This 

framework is sensitive to planning and design modifications such as urban densification, demographic changes, 

commercial development, or new public transportation construction. To showcase the workflow, we collect the 

training data and train a choice prediction model for California. We test the fidelity of the new predictive model on a 

held-out validation dataset and find that it has high accuracy in predicting the aggregate mode-distance distribution. 

We also apply the trained model in a proof-of-concept case study in the South Bay Region of Los Angeles County, 

which quantifies the mobility impacts of a neighborhood-scale urban renewal scenario by different development 

stages. We find our model adequately sensitive to capture the varying travel modal split and VMT produced by 

different stages. Results prove that a dense, mixed-use neighborhood development can entail considerably increased 

usage in modes of walking, biking, and public transit, as well as a significant reduction in VMT. 

Overall, this research aims to equip planners and designers with the modeling and simulation capability that allows 

integrating mobility-related metrics into early-stage design consideration. The key innovation of this paper lies in (1) 

a simple yet effective way to parametrize urban accessibility features based on POI data and to use them in representing 

various types of planning and design modifications; (2) a learning-based approach to predict the joint choice of travel 

mode and distance level for individual trips so that the aggregate modal-split and VMT can be computed; (3) a data-

driven framework that is generalizable and expandable since it is entirely driven by training data and do not require 

pre-defined expert-designed heuristics as in most traditional methods. 

Methodology 

Overview of the framework 

The data-driven framework, as illustrated in Figure 1, has four main steps which can be divided into the modeling part 

and the simulation part. The modeling part aims to model travel behaviors by (1) Population clustering and (2) Travel 

choice modeling. These two steps need to be conducted only once for a region, such as a state like California, which 

can provide adequate trip data for training the models and whose population can be assumed to share similar travel 

profiles. The simulation part aims to produce the trips by (3) Trip generation and simulation, and compute mobility 

metrics through (4) Analysis. These two steps can be performed at a fine geographical level, such as CBG, for any 

area of interest within the modeled region. 
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Figure 1. Data-driven modeling and simulation framework. 

More specifically, (1) Population clustering step identifies population clusters of homogeneous mobility patterns. This 

step has two outputs that inform the rest of the framework including a function that transforms the demographic 

features into a specific cluster label, and each cluster’s distributions of mobility choices. (2) Travel choice modeling 

step trains a learning-based classifier that predicts the individual trip’s joint choice of travel mode and distance range. 

(3) Trip generation and simulation step takes inputs about the local urban context to produce trips in the simulated 

area. (4) Analysis step computes a series of metrics that help quantify the mobility performance. 

Feature engineering and data preparation 

Most of the required data is available publicly or can be computed using open data sources in the US. In this paper, 

we evaluate the proposed framework for California utilizing the following data sources: 

• The 2017 National Household Travel Survey (NHTS) Add-On data for California 

(Caltrans, 2017). This dataset provides 94082 geocoded urban trip records of 23329 

surveyed Californians. There are 12 other states in the US where such data is available 

(U.S. Bureau of Transportation Statistics, 2017); 

• The 2018 American Community Survey (ACS) five-year estimates (US Census Bureau, 

2018). This is a nationwide dataset that provides population information at various spatial 

levels. 

• POI data from OpenStreetMap.org (OSM). This data provides the location of POIs and 

information about their service types as POI tags (OpenStreetMap, 2021). 

• The 2017 Public Use Microdata Sample (PUMS) five-year estimates (US Census Bureau, 

2017). This dataset provides disaggregate population samples with each individual's 

https://OpenStreetMap.org


   

 

 

  

    

    

      

    

 

      

   

   

 

  
    
        

    
    

   
  

 
   

     
   

 
        

      
  

 

   
          

      
    

        
  

 
 

 
 

        
 
 

   
            

   

 

 
  

  
  

 
    

 
 

 
    

 

demographic features. The geographical unit of sampling is called Public Use Microdata 

Area (PUMA) and there are around one thousand samples collected for each PUMA in 

California. 

Table 1 describes all features used for the training process in terms of the feature type, discretization levels, and the 

data source. Demographic features (D) describe the traveler by age, occupation, and household characteristics. Time 

features (T) include season, weekday and weekend flags, and the time of day to describe differences in daily and 

seasonal mobility patterns. Activity features (A) explain the trip purpose by specifying the activity at origin and the 

activity at destination. Urban environment features (UE) describe the spatial context of the trip's origin location such 

as the population density and the accessibility to various urban services. In this paper, we use CBG as an example 

geographical unit to aggregate UE features. Mode-distance features (MD) describe the travel mode and the distance 

level of a trip. The trip count feature (TC) indicates the number of trips that the traveler makes during the time specified 

by T. The final training dataset is a set of trip records from NHTS where each trip has all derived features as listed in 

Table 1. 

Table 1. Description of features used for the training process. 
Feature name Type Levels / Description Source 
Demographic (D) 

household vehicle Categorical not own vehicle; own vehicle NHTS 
age 
household size 

Categorical 
Categorical 

<= 17; 18 to 24; 25 to 64; >= 65 
1; 2; 3; 4; > 4 

household income Categorical < 50k; 50k to 75k; 75k to 100k; 100k to 125k; 125k to 
150k; > 150k 

household workers Categorical 0; 1; >1 
occupation Categorical sales / service; clerical / administrative / support; 

manufacturing / construction / maintenance / farming; 
professional / managerial / technical; student; other 

Time (T) 
season Categorical winter (Dec, Jan, Feb); spring (Mar, Apr, May); summer NHTS 

(Jun, Jul, Aug); fall (Sep, Oct, Nov) 
weekend Categorical weekend; weekday 
time of day Categorical early morning (12pm - 6am); morning (6am - 11am); noon 

(11am - 3pm); afternoon (3pm - 5pm); evening (5pm -
9pm); night (9pm - 12pm) 

Activity (A) 
activity at origin / Categorical home; work; school; shop / errands; social / recreational; NHTS 
destination meal; other 

Urban environment (UE) 
CBG school Numerical no. school within different distance levels (< 0.5 mile; 0.5 - OSM 
accessibility 1 mile; 1 - 1.5 mile; 1.5 - 2 mile; 2 - 3 mile; 3 - 7 mile; > 7 

mile) from the center point of the trip’s origin CBG 
CBG office Numerical no. office within different distance levels from the center 
accessibility point of the trip's origin CBG 
CBG shop/errands Numerical no. shop/errands within different distance levels from the 
accessibility center point of the trip's origin CBG 
CBG social/recreation Numerical no. social/recreation within different distance levels from 
accessibility the center point of the trip's origin CBG 



      
  

 
    

 
 

 
   

        
      
            

     
        

      
  

 

  

  

     

  

 

 
   

  
  

  
   

 
 

  
 

 
   

  
  

  

    

    

  

CBG meal accessibility Numerical no. meal within different distance levels from the center 
point of the trip's origin CBG 

CBG public transit Numerical no. public transit within different distance levels from the 
accessibility center point of the trip's origin CBG 
CBG population Numerical total population/land area (km2) of the trip’s origin CBG ACS 
density 

Mode-distance (MD) 
mode Categorical walking/biking; driving; public transit; other NHTS 
distance level Categorical < 0.5 mile; 0.5 - 1 mile; 1 - 1.5 mile; 1.5 - 2 mile; 2 - 3 

mile; 3 - 7 mile; > 7 mile 
Trip count (TC) 

trip count Categorical 0; 1; 2; 3; 4; 5 trips are made by the traveler during the time NHTS 
specified by T. 

Table 2 shows how the POI tags in OSM are mapped to urban service types. The processes of accessing OSM data, 

mapping POI tags to service types, and deriving accessibility features are conducted in Grasshopper, Rhino3D 

(McNeel, R., & others, 2010) with the help of a mobility analysis toolkit called Urbano.io (Dogan et al., 2020). The 

rest of the modeling and simulation processes are conducted in Python with the machine learning package scikit-learn 

(Pedregosa et al., 2011). 

Table 2. POI tags in OSM correspond to the urban service types. 
Urban Service Type Corresponding POI Tags in OpenStreetMap 
school amenity=school, university, college 
office office=* 
shop/errands/services æamenity=bank, pharmacy, post_box, atm, post_office, vending_machine, 

car_wash, marketplace, fuel, telephone, library, charging_station, bicycle_rental, 
veterinary, car_rental, driving_school, community_centre, ice_cream; 
shop=* 

social/recreation amenity=place_of_worship, bar, pub, townhall, social_facility, cinema, bbq, 
nightclub, arts_centre, shower, theatre; 
leisure=* 

meal amenity=restaurant, cafe, fast_food,  food_court 
public transit public_transport=* 
* all tags with the keyword. 

Population clustering 

Population clustering is a process that identifies groups of individuals with similar mobility patterns. Mobility patterns 

can be described as the tendencies to make various mobility choices such as mode-distance, activity, and trip count. 

Figure 2 illustrates the process where the population is clustered based on their different tendencies over time. 

https://Urbano.io
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Figure 2. Flow chart of population clustering. 

Three probability distributions are used to specify the tendencies to make mobility choices: mode-distance distribution 

MD (Equation 1), activity distribution A (Equation 2), and trip count distribution TC (Equation 3): 

𝑥𝑥𝑚𝑚1𝑑𝑑1 ⋯ 𝑥𝑥𝑚𝑚1𝑑𝑑𝑗𝑗
⋱ ⋮ (1) 

𝑥𝑥𝑚𝑚𝑖𝑖𝑑𝑑1 ⋯ 𝑥𝑥𝑚𝑚𝑖𝑖𝑑𝑑𝑗𝑗

𝑦𝑦𝑜𝑜1𝑑𝑑1 ⋯ 𝑦𝑦𝑜𝑜1𝑑𝑑𝑗𝑗
⋱ ⋮ (2) 

𝑦𝑦𝑜𝑜𝑖𝑖𝑑𝑑1 ⋯ 𝑦𝑦𝑜𝑜𝑖𝑖𝑑𝑑𝑗𝑗

𝑇𝑇𝑇𝑇 = (𝑧𝑧0 ⋯ 𝑧𝑧𝑘𝑘 ) (3) 

where 𝑥𝑥𝑚𝑚𝑖𝑖𝑑𝑑𝑗𝑗 
denotes the probability of taking mode mi and distance level dj, 𝑦𝑦𝑜𝑜𝑖𝑖𝑑𝑑𝑗𝑗 

denotes the probability of having 

activity oi at the origin and activity dj at the destination, and 𝑧𝑧𝑘𝑘 denotes the probability of making k trips. MD, A, and 

TC all have elements that sum to one. The modeled choice options for the mode, the distance level, the activity, and 

the trip count are listed in Table 1. 



    

     

  

    

       

       

   

 

  

    

 

    

      

     

   

       

 

 

  

(DJ features 

Demographic-cluster 
mapping function f 
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--------------------------------------------------~ 
population cluster label (c) Time (T) features Activity (A) features 

Classifier for trip mode-distance 

Output probability vector MD 

Final Input to the classifieri 

Urban environment (UE) features 
I 
I 
I 
I 

Three Random Forest classifiers are trained separately to predict MD, A, and TC for all possible combinations of 

demographic features D and time features T. The predicted results are stacked into matrix C (Equation 4): 

𝑀𝑀𝑀𝑀𝐷𝐷1𝑇𝑇1 ⋯ 𝑀𝑀𝑀𝑀𝐷𝐷1𝑇𝑇𝑗𝑗 
, 𝐴𝐴𝐷𝐷1𝑇𝑇1 

⋯ 𝐴𝐴𝐷𝐷1𝑇𝑇𝑗𝑗 
, 𝑇𝑇𝑇𝑇𝐷𝐷1𝑇𝑇1 

⋯ 𝑇𝑇𝑇𝑇𝐷𝐷1𝑇𝑇𝑗𝑗
⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮  (4) 

𝑀𝑀𝑀𝑀𝐷𝐷𝑖𝑖𝑇𝑇1 
⋯ 𝑀𝑀𝑀𝑀𝐷𝐷𝑖𝑖𝑇𝑇𝑗𝑗 

, 𝐴𝐴𝐷𝐷𝑖𝑖𝑇𝑇1 
⋯ 𝐴𝐴𝐷𝐷𝑖𝑖𝑇𝑇𝑗𝑗 

, 𝑇𝑇𝑇𝑇𝐷𝐷𝑖𝑖𝑇𝑇1 
⋯ 𝑇𝑇𝑇𝑇𝐷𝐷𝑖𝑖𝑇𝑇𝑗𝑗

where each row is a feature vector for one demographic group Di across all time frames Tj. 

Then, the K-Means clustering algorithm is performed on matrix C where each row is matched to a cluster label. As a 

result, the cluster mean distribution AT and TCT by time T can be directly derived by averaging the corresponding 

elements in the clustered matrix C. Also, by indexing the clustered matrix C, a mapping function can be created as in 

Equation 5: 

(5) 

where any given demographic specified by features D can be mapped to a cluster label c. 

Travel choice modeling 

The predictive model for the trip mode-distance uses a Random Forest classifier that predicts the probability 

distribution of the mode-distance for a given trip. The output MD takes the same form as in Equation 1 where 𝑥𝑥𝑚𝑚𝑖𝑖𝑑𝑑𝑗𝑗 

denotes the probability that the predicted trip takes mode mi and distance level dj. Figure 3 shows the data flow of the 

proposed classifier. The time, activity, and urban environment features are directly input into the classifier while the 

demographic features go through the mapping function f and are translated into a population cluster label. 

Figure 3. Input and output data of the trip mode-distance classifier. 

Model assessment 
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To assess the clustering validity, we first examine how the derived clusters differ by their mobility patterns. This is 

achieved by comparing the mean activity distribution AT and mean trip count distribution TCT, of all derived clusters. 

Besides, we also examine how the derived clusters differ by their demographics. The cluster demographic can be 

computed by mapping each sample from the PUMS data to a cluster label and deriving the cluster mean values of 

demographic features D. A successful clustering should produce clearly differentiated clusters that can recognize 

varying mobility patterns of different representative demographics. 

To assess the effectiveness of the trip mode-distance classifier, we split the data where 70% is used for training and 

30% is held out for validation. The validation approach is to compare the predicted MD distribution in the validation 

dataset, derived by averaging the predicted MD for all validation samples, against the true MD distribution in the 

validation dataset. Additionally, the feature importance of the Random Forest classifier is studied to provide insights 

about the most impactful features on the mode-distance choice of people. 

Trip generation and simulation 

Figure 4 illustrates the trip generation and simulation process which outputs a list of home-based trips by geographical 

units (e.g. CBG in this paper). 
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Figure 4. Flow chart of the simulation process. 

The required simulation inputs include: (1) the user-defined time features T. (2) the urban environment features UE 

for all CBGs in the area, which can be obtained in the same way as for the training data. (3) the newly defined PUMA-

level Cluster Distribution as in Equation 6: 

𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑀𝑀𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 = (𝑝𝑝1 , 𝑝𝑝2 … , 𝑝𝑝𝑐𝑐 ) (6) 

where pc is the probability that a random resident in the PUMA belongs to cluster c. It can be derived by mapping each 

sample from the PUMS data to a cluster label and calculating the aggregate cluster distribution for the PUMA. 

Given the simulation inputs, the first procedure is to synthesize the residential population for each CBG. It is a process 

of random sampling individuals according to the corresponding PUMA's Cluster Distribution with a sample size 

equivalent to the CBG's total population. All CBGs within a PUMA use the same Cluster Distribution for their 

population synthesis. 

After the population synthesis, a sample enumeration process is conducted where the trips are iteratively generated by 

sampling the trip count for each resident and then sampling the activity for each trip. Note that these two sampling 

processes are purely based on the cluster mean distribution TCT and AT. This is due to an assumption we made to 

simplify the framework that the choice of activities and trip count are only dependent on the traveler and the time, but 

independent of the urban environment. 

It is also worth noting that only home-based trips are simulated because only these trips have a defined origin CBG. 

For non-home-based trips, the trip origin CBG is undefined and therefore the corresponding urban environment 

variables cannot be specified. One possible solution is to add a trip-sending process that assigns a specific destination 

for each trip and keeps track of the traveler's location across different time frames. However, this is beyond the scope 

of this paper. 

Analysis 

The predicted MD for simulated trips can be aggregated into statistics that describe the overall home-based travel 

behaviors. Assuming that the simulation generates K number of home-based trips for a CBG, Pm can be computed to 

show the aggregate percentage of trips choosing mode m as in Equation 6: 

(6) 

where 𝑥𝑥𝑘𝑘𝑚𝑚𝑑𝑑𝑗𝑗 
is the entry of MDk for trip k that denotes the probability of this trip taking mode m and travel by distance 

level dj. 

To investigate the average travel distance per person by mode m, Dm can be computed as in Equation 7: 
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(7) 

where E denotes the estimated value of distance for distance level j. It can be the median trip distance of level j, 

which is 0.25 miles, 0.75 miles, 1.25 miles, 1.75 miles, 2.45 miles, 4.45 miles, and 14.78 miles respectively for the 

distance level 1 to level 7 in our training dataset. When the mode m is set to automobile driving, Dm is equivalent to 

the average VMT per person. 

Case study 

The South Bay Region in Los Angeles County is used as a case study to demonstrate the simulation process and the 

analysis metrics. This is an area with the densest trip survey samples in California based on the spatial distribution of 

trip origins in the training data as shown in Figure 5a. Figure 5b shows the boundaries of CBGs and PUMAs covered 

in this area. 

Figure 5. (a) California state map with trip origins in the training data. (b) Simulation area with PUMA and CBG 

boundaries. 

The case study aims to investigate the mobility impact of a development scenario on a neighborhood covering 12 

CBGs with approximately 17 square kilometers (Figure 6). The development is divided into three stages: (1) 

Population is densified by adding 1000 new residents in each CBG in the neighborhood (Figure 6b). It is assumed that 

the new population follows the same Cluster Distribution as the existing population, and there are no preference 

changes for all clusters. (2) Public transit accessibility is increased by introducing 250 new public transit services to 

the neighborhood and the surrounding area (Figure 6c). (3) Commercial developments are added. More specifically,10 
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shops, 10 social recreational services, and 10 meal service locations are added to the center location of each CBG in 

the neighborhood (Figure 6d). 

Figure 6. (a) Existing urban environment. (b) Development stage 1: the population is densified. (c) Development 

stage 2: public transit accessibility is increased. (d) Development stage 3: commercial developments are added. 

By performing the simulation for a typical weekday (i.e. six time periods including early morning, morning, noon, 

afternoon, evening, and night) based on the existing environment and the different development stages, metrics like 

the daily average trip mode choice proportions (Pwalking/biking, Ppublic transit, Pdriving) and the daily total VMT per person 

(Ddriving) can be derived and compared to study the mobility impacts of each development scenario. 

Results 

Assessment of population clustering result 

We extract 12 population clusters from the clustering process (see the Clustering section of the Supplementary 

Material). Figure 7 shows the cluster mean trip count distributions TCT and activity distributions AT for three example 

time periods T (early morning, morning, and evening in winter weekdays). These distributions reveal the varying 

mobility patterns among specific clusters. For example, trip count distributions show that cluster #6, #7, #8, #12 are 

more inclined to travel during the early morning than other clusters. Activity distributions show that cluster #4, #5, 

#10, #11 have more tendencies to do school-related activities (e.g. from home to school or from school to home). 
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Figure 7. Cluster mean trip count TCT and activity AT for three example time periods T: early 

morning, morning, and evening in winter weekdays. The darker color indicates the more 

probability that people from the cluster (labeled on the y axis) will make the corresponding 

mobility choice (labeled on the x-axis). 

By deriving and comparing the cluster mean demographic features as shown in Table 3, we can further relate the 

mobility patterns to specific demographics. For example, cluster #6, #7, #8, #12 consist predominantly of workers 

from the industry of manufacturing, construction, maintenance, and farming. Cluster #4, #5, #10, #11 are 

predominantly young people who are students. Further, the clusters are also clearly differentiated by household 

characteristics, including the size, vehicle ownership, workers count, and income. Based on the degree of dissimilarity 

among the derived clusters and the inherent consistency regarding their behavioral trends and demographics, it can be 

concluded that the proposed clustering approach effectively recognizes representative demographic groups with their 

distinct mobility patterns. 

Table 3. Cluster mean demographic features. 
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#1 46.3 3.9 2.7 136213.6 2.0 0.3 0.2 0.0 0.2 0.0 
#2 45.2 3.5 0.0 92388.3 1.7 0.3 0.2 0.0 0.1 0.0 
#3 66.0 2.5 0.0 31164.3 0.0 0.0 0.0 0.0 0.0 0.0 
#4 10.9 3.8 1.5 30902.3 0.0 0.0 0.0 0.0 0.0 1.0 
#5 10.0 4.5 0.0 62963.1 1.5 0.0 0.0 0.0 0.0 1.0 
#6 55.7 2.7 1.9 49938.0 0.0 0.0 0.0 1.0 0.0 0.0 
#7 49.6 3.1 0.0 34642.2 0.0 0.0 0.0 1.0 0.0 0.0 
#8 44.1 3.6 0.0 66156.0 1.8 0.0 0.0 1.0 0.0 0.0 
#9 69.5 2.3 1.9 74370.1 0.0 0.0 0.0 0.0 0.0 0.0 

#10 12.2 3.6 0.0 9831.6 0.0 0.0 0.0 0.0 0.0 1.0 
#11 10.0 4.9 2.4 111502.6 1.8 0.0 0.0 0.0 0.0 1.0 
#12 43.9 4.3 2.8 98096.1 2.2 0.0 0.0 1.0 0.0 0.0 

Assessment of mode-distance classifier 

After training the mode-distance classifier (see the Classification section of the Supplementary Material), we apply it 

to the validation dataset and compare the predicted and the actual distributions of trip mode-distance as shown in 

Figure 8. It demonstrates the aggregate prediction accuracy of the proposed choice prediction model. 

Figure 8. (a) Actual distribution of trip mode-distance in the validation dataset. (b) Predicted distribution. 

To further investigate the most impactful factors for the choice of trip mode-distance, the feature importance ranking 

for the Random Forest classifier is plotted as in Figure 9. We find that all top-ranked features are related to the urban 

environment UE and activity A. More specifically, among urban environment features, the CBG population density 

is the most significant feature. It is closely followed by features that describe the accessibility to the meal, social 

recreational, shop, and errand services within a half-mile range. Among activity features, the most determining 

activities are working, shopping, and running errands. Whether a trip starts from or goes to these activities influences 

the predicted mode-distance choice. These conclusions align well with numerous previous studies, which mention that 

population density has a statistically significant association with vehicle travel (Newman and Kenworthy, 2011), half-

mile accessibility is closely associated with walking behavior (Handy, 2018), and various types of trips such as 

shopping, recreational, and commute trips show different travel patterns (Litman, 2021). 
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Figure 9. The feature importance ranking for the Random Forest trip mode-distance classifier. 

Case study results 

The Cluster Distributions of the 20 PUMAs in the simulation area are shown in Figure 10. It demonstrates varying 

demographics living in different areas. For example, PUMA 1, PUMA 12, and PUMA 20 have the highest proportion 

of cluster #1 population who have the highest average household income (Table 3). PUMA 4 has the highest cluster 

#11 population who are predominantly young students. 

Figure 10. PUMA-level Cluster Distribution in the simulation area. 

We first conduct the simulation process for a typical winter weekday. The derived CBG-level spatial distributions of 

daily average walking and biking trip proportion Pwalking/biking, driving trip proportion Pdriving, public transit trip 

proportion Ppublic transit, and daily total VMT per person Ddriving are respectively shown in Figure 11, Figure 12, Figure 

13, and Figure 14. Note that there are no valid results for the CBGs without a residential population because there are 

no home-based trips generated for these CBGs. 
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Figure 11. Simulated walking/biking trip proportion (Pwalking/biking) in the winter weekday. 

Figure 12. Simulated driving trip proportion (Pdriving) in the winter weekday. 
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Figure 13. Simulated public transit trip proportion (Ppublic transit) in the winter weekday. 

Figure 14. Simulated VMT per person per day (Ddriving) on the winter weekday. 

Results show that the San Pedro area (south-east corner of the simulation area) produces the overall highest trip 

proportion by walking, biking, and public transit, as well as the least VMT per person. Comparatively, the 

neighborhood to be developed is one of the most automobile-dependent areas in the existing environment (see Figure 

12a). By updating the urban environment in each development stage, the travel patterns in the developed neighborhood 

and its surrounding area are gradually changed and eventually reach a similar level as observed in the San Pedro area. 

To further quantify the development impacts on local residents' home-based trips, Table 4 reports the average 

simulated metrics for the CBGs in the neighborhood. Two additional time frames - winter weekend and summer 

weekday - are also simulated so that temporal and seasonal differences can be observed. Results show that a large 



  

 

  

   

  

              

  

   

 

  

 

 

 
    

 
 

 
 

 
 

 
 

 
  

 
 

 
     

     
     

      
 

 
     

     
     

      
 
 

     
     

     
      

     
 

 

 

    

  

      

 

    

   

    

neighborhood-scale urban renewal program can significantly promote active transportation modes and reduce VMT. 

More specifically, after three development stages, the walking and biking trips are increased by 33 percent (from 

around 8.7% to around 11.6%), and the public transit trips are doubled (from around 0.6% to around 1.2%). The 

driving trips are decreased from around 88% to around 85%. The VMT is reduced by nearly 4 miles per person per 

day. Considering that the total population in the development neighborhood is around 22000, the total VMT reduction 

in this neighborhood is around 32 million per year. Regarding the temporal differences, results show that people 

generally travel less on weekends and in winters than weekdays and summers, which leads to slightly different 

magnitudes of travel impacts in different time frames. In addition, it is worth noting that in the first stage where only 

the population is densified and no new POIs are introduced, the estimated VMT per person is increasing since there 

are insufficient urban services available close by and the newly added residents still need to drive to distant 

destinations. 

Table 4. Simulated metrics for the developed neighborhood. 
Simulated Metric Existing Existing+ Existing+ Existing+ 
time increased increased increased 

population population+ population+ 
new public transit new public transit+ 

new POIs 
Winter Pwalking/biking 8.72% 8.87% 9.44% 11.67% 
weekday Ppublic transit 0.60% 0.60% 0.77% 1.32% 

Pdriving 88.45% 88.31% 87.57% 85.30% 
VMT * 22.81 22.94 22.33 19.24 

Winter Pwalking/biking 8.94% 9.06% 9.61% 11.91% 
weekend Ppublic transit 0.42% 0.41% 0.58% 0.96% 

Pdriving 88.59% 88.48% 87.77% 85.59% 
VMT * 21.64 21.80 21.24 17.87 

Summer Pwalking/biking 8.64% 8.79% 9.44% 11.59% 
weekday Ppublic transit 0.61% 0.61% 0.69% 1.24% 

Pdriving 88.56% 88.41% 87.68% 85.46% 
VMT * 23.03 23.20 22.60 19.36 

* The unit of VMT is mile per person per day. 

Discussion 

Practical implications of case study results 

The new neighborhood's reduced VMT and the changed travel modal split can be extrapolated into substantial 

economic, environmental, and societal gains. For example, the 32 million annual VMT reduction indicates 

approximately 117 million kilogram CO2 emission, 1 million gallons of gasoline consumption, and $1.6 million 

pollution costs saved per year, assuming that CO2 emission per mile driven is 368.4 grams, gasoline consumption per 

mile driven is 0.041 gallon (Arkansas DEQ, 2008), and pollution costs per mile driven are 5 cents (Litman, 2010). 

The 33 percent increase in walking and biking trips indicates a reduction of individual pedestrian and biker injury risk 

by 16%, according to a correlation established by Jacobsen (2003) (1 − 1.33−0.6 = 0.16). Moreover, public health 



  

      

     

   

   

    

   

    

 

    

 

  

     

   

  

    

    

   

  

   

   

  

  

 

 

  

 

            

    

   

  

   

benefits can also be derived from the framework simulation results. Examples are the decrease of the obesity 

population (Frank, Andresen and Schmid, 2004) and medical costs associated with obesity (Edwards, 2008), which 

can be computed based on the projected daily miles traveled per person by walking and biking. 

The case study further discovers that population densification alone is insufficient to reduce VMT because we find 

that the estimated VMT per person increases in the first development stage. Thus, a mixed-use development strategy 

is crucial to provide new residential developments with adequate services and accessible public transport. This finding 

provides evidence that supports popular theories of Walkable City (Speck, 2013) and Smart Growth (US EPA, 2006) 

which advocate compact and mixed-use urban development. The new simulation framework can be a practical tool to 

help planners and designers to make well-informed decisions regarding the optimal ways of densification. 

The theoretical contribution of the framework 

The primary theoretical contribution of this research is the development of a design-sensitive, multi-modal, and data-

driven travel demand forecasting framework. To our knowledge, this framework is the first of its kind and has unique 

advantages that allow it to be implemented in planning and urban design applications. 

Firstly, the framework provides a comprehensive yet straightforward approach to parametrize various types of design 

modifications in the built environment. The urban environment features UE can be used to represent spatial changes 

such as new constructions and rezoning. The spatial demography represented by the Cluster Distribution can be used 

to address anticipated population change. The case study provides an example of modeling densified population and 

new constructions of commercial and public transportation services. However, it is possible to investigate other design 

questions with this framework, such as (1) Comparing different service allocation scenarios and answering questions 

like which combination of the service types serves the neighborhood best, how many of them are needed, and where 

they should be placed; (2) Predicting the influence of increasing certain types of demographics in the local population, 

such as senior population when planning senior housings, young population when planning school districts or new 

dormitories, or workers of a certain industry when planning new industrial areas; (3) Analyzing a specific time frame 

for time-sensitive decision-making such as designing and planning for temporary urban events; (4) Analyzing a 

specific activity type for targeted design analysis such as home-school travel environment. Overall, the framework 

allows a significant degree of freedom for planners and urban designers to spatially, demographically, and temporally 

contextualize the mobility analysis for their projects. 

Secondly, this framework uses a joint choice prediction model for trip mode-distance that allows predicting the multi-

modal split and their distance-related metrics such as VMT. These metrics are normally challenging to compute and 

require dedicated data collection and expert modeling in traditional transportation models. We propose a simpler 

framework applicable for the preliminary scenario testing in planning and urban design practices, and its fidelity to 

planning and design-related questions has been demonstrated in the case study. 

Further, the spatial resolution of the framework is theoretically unlimited and only constrained by data availability. 

The latitudes and longitudes of the geocoded trips in the survey data that we used for California are rounded to two 



    

      

  

    

   

    

    

     

    

   

   

    

  

   

   

  

  

    

    

          

   

 

   

 

  

  

  

  

   

    

  

      

decimal places, which indicates a precision level of around one kilometer. Thus, we engineered the features, calibrated 

the models, and conducted the simulation at the level of CBG, which has a similar spatial resolution. The modeling 

and simulation precision could be improved significantly with higher-resolution trip datasets accompanied with the 

UE features aggregated at a finer spatial resolution such as block or building level. 

Lastly, the framework is generalizable and expandable due to its data-driven nature. The proposed framework can be 

deployed to any other location worldwide provided that the data is available. In contrast, expert-designed rules in 

traditional transportation models usually need greater efforts to be adjusted and calibrated to incorporate a changed 

geographical context. Also, if specific urban features are of interest to certain design questions but cannot be captured 

by the UE data used in this paper (e.g. availability of bike lanes, quality of street design, or microclimates in urban 

spaces), the data can be added to the training dataset as new feature columns, and the predictive model can be retrained 

to make it sensitive to these new design aspects. However, one potential hindering factor is the availability and quality 

of built environment data which may impair the reliability and sensitivity of the data-driven simulation. For example, 

the OSM dataset used in this paper may not contain all POIs available. Some design-related features, such as 

landscapes, microclimates, or infrastructures, can be challenging to derive because of the lack of high-quality, high-

resolution data sources. Future studies based on this framework need to explore a more comprehensive set of UE 

features, test the sensitivity of the prediction, and provide practical guidance regarding variable selection. 

The current limitation of the framework proposed in this paper is that only home-based trips are simulated because 

only home-based trips have a defined origin CBG and, therefore, can be matched to the corresponding UE. However, 

the methodology and the case study results remain to be valuable and informative because home-based activities are 

the major type of daily trips. According to our NHTS trip data, home-based trips account for more than 33 percent of 

all trips while no other activity-based trips account for more than 16 percent. This makes the home-based travel 

behavior a significant indicator of the local mobility environment of the neighborhood. To enable holistic forecasting 

of both home-based and non-home-based trips, a trip-sending module and population location tracking over a series 

of timesteps are required. This is beyond the scope of this paper and is subject to future work. 

Conclusion 

This study provides a unique perspective in design-sensitive travel demand forecasting by developing a data-driven 

mode-distance choice prediction framework for home-based trips. This framework utilizes open data sources including 

the travel survey data, census data, and POI data for modeling and simulating the spatiotemporal travel behavior of 

urban residents. The framework is also generalizable and expandable due to its data-driven nature, which makes it a 

practically applicable tool to tackle varying design questions and be adapted to different geographical contexts. 

Through a proof-of-concept case study, we provide evidence that dense and mixed-use urban development can 

significantly reduce VMT, advocate active transportation, and increase public transit ridership. 

Despite that the associations between the built environment and human travel behaviors have been extensively 

discussed in previous studies, this research, for the first time, allows urban designers and planners to efficiently test 



   

     

    

 

 
 

 

  
 

 

 
 

 

 
 

  
 

  
 

 

  
   

 

   
 

 

 
 

 
 

the changes in the aggregate modal-split and the reduction in VMT induced by different scenarios during the early-

stage design process. We believe that our research can facilitate the co-design of mobility solutions and urban forms, 

which will empower the design and planning community in addressing the sustainability and livability issues in future 

urban mobility systems. 
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